The present research focuses on the tribological behavior of the AA5083 alloy-based hybrid surface composite using aluminosilicate and multi-walled-carbon nanotube through friction stir processing for automotive applications. The friction stir processing parameters (tool rotation and traverse speed) are varied based on full factorial design to understand their influence on the tribological characteristics of the developed hybrid composite. The surface morphology and composition of the worn hybrid composite are examined using a field-emission scanning electron microscope and an energy-dispersive x-ray spectroscope. No synergistic interaction is observed between the wear rate and friction coefficient of the hybrid composite plate. Also, adhesive wear is the major wear mechanism in both base material and hybrid composite. The influence of friction stir process parameters on wear rate and the friction coefficient is analyzed using the hybrid polynomial and multi-quadratic radial basis function. The models are utilized to optimize the friction stir processing parameters for reducing the rate of wear and friction coefficient using multi-quadratic RBF algorithm optimization.
AA1050/AA6061/AA1050 layered sheet was fabricated by cold roll-bonding process and subsequently T4 and T6 aging-treated. Two commercial AA1050 sheets of 1 mm thickness and one AA6061 sheet of 2 mm thickness were stacked up so that an AA6061 sheet was located between two AA1050 sheets. After surface treatments such as degreasing and wire brushing, they were then roll-bonded to a thickness of 2 mm by cold rolling. The roll-bonded Al sheets were then processed by natural aging (T4) and artificial aging (T6) treatments. The as roll-bonded Al sheets showed a typical deformation structure, where the grains are elongated in the rolling direction. However, after the T4 and T6 aging treatments, the Al sheets had a recrystallized structure consisting of coarse grains in both the AA5052 and AA6061 regions with different grain sizes in each. In addition, the sheets showed an inhomogeneous hardness distribution in the thickness direction, with higher hardness in AA6061 than in AA1050 after the T4 and T6 age treatments. The tensile strength of the T6-treated specimen was higher than that of the T4-treated one. However, the strength-ductility balance was much better in the T4-treated specimen than the T6-treated one. The tensile properties of the Al sheets fabricated in the present study were compared with those in a previous study.
Changes in the microstructure and mechanical properties of as-roll-bonded AA6061/AA5052/AA1050 threelayered sheet with increasing annealing temperature were investigated in detail. The commercial AA6061, AA5052 and AA1050 sheets with 2 mm thickness were roll-bonded by multi-pass rolling at ambient temperature. The roll-bonded Al sheets were then annealed for 1 h at various temperatures from 200 to 400 °C. The specimens annealed up to 250 °C showed a typical deformation structure where the grains are elongated in the rolling direction in all regions. However, after annealing at 300 °C, while AA6061 and AA1050 regions still retained the deformation structure, but AA5052 region changed into complete recrystallization. For all the annealed materials, the fraction of high angle grain boundaries was lower than that of low angle grain boundaries. In addition, while the rolling texture of the {110}<112> and {123}<634> components strongly developed in the AA6061 and AA1050 regions, in the AA5052 region the recrystallization texture of the {100}<001> component developed. After annealing at 350 °C the recrystallization texture developed in all regions. The as-rolled material exhibited a relatively high tensile strength of 282 MPa and elongation of 18 %. However, the tensile strength decreased and the elongation increased gradually with the increase in annealing temperature. The changes in mechanical properties with increasing annealing temperature were compared with those of other three-layered Al sheets fabricated in previous studies.
Aluminum alloy-based additive manufacturing (AM) has emerged as a popular manufacturing process for the fabrication of complex parts in the automotive and aerospace industries. The addition of an inoculant to aluminum alloy powder has been demonstrated to effectively reduce cracking by promoting the formation of equiaxed grains. However, the optimization of the AM process parameters remains challenging owing to their variability. In this study, the response surface methodology (RSM) was used to predict the crack density of AM-processed Al alloy samples. RSM was performed by setting the process parameters and equiaxed grain ratio, which influence crack propagation, as independent variables and designating crack density as a response variable. The RSM-based quadratic polynomial models for crack-density prediction were found to be highly accurate. The relationship among the process parameters, crack density, and equiaxed grain fraction was also investigated using RSM. The findings of this study highlight the efficacy of RSM as a reliable approach for optimizing the properties of AM-processed parts with limited experimental data. These results can contribute to the development of robust AM processing strategies for the fabrication of highquality Al alloy components for various applications.
With a strive to develop light-weight material for automotive and aerospace applications, aluminum-based hybrid nanocomposites (AHNCs) were manufactured utilizing the compocasting approach in this study. Chopped carbon fibers (CFs) are reinforced along with different weight fractions of nanoclay (1–5%) in the matrix of AA6026 forming AHNCs. The AHNCs specimens were examined by microstructural analysis, mechanical characterization, fatigue, and corrosion strength as per ASTM guidelines. Electroless plating method is adopted for coating CFs with copper to improve the wettability with matrix. SEM pictures of manufactured composites reveal thin inter-dendritic aluminum grains with precipitate particle of eutectic at intergranular junctions, as well as nanoclay particles that have precipitated in the matrix. Tensile strength (TS) rises with inclusion of nanoclay up to a maximum of 212.46 MPa for 3% nanoclay reinforcement, after which the TS is reduced due to non-homogeneity in distribution, agglomeration and de-bonding of nanoparticles. Similarly, micro-hardness increases with addition of 3% nanoclay after which it decreases. Higher energy absorption was achieved with 3% nanoclay reinforced hybrid and a significant improvement in flexural strength was obtained. With addition of both CFs and nanoclay, the fatigue strength of the hybrid composite tends to increase due to flexible CFs and high surface area nanoclays which strengthen the grain boundaries until 3% addition. Addition of nanoclay lowers the corrosion rate with nanoclays filling the crevices and voids in the matrix.
미셸 판데르아(Michel van der Aa, 1970-)의 오페라 ≪기억의 재구성≫(Blank Out, 2015-2016) 은 디지털 테크놀로지로 다변화되는 21세기 동시대 오페라를 이해할 수 있는 중요한 단초를 제공 한다. 2016년 초연된 이 작품에서는 가족의 익사를 목격한 주인공의 트라우마를 집요하게 추적하 면서 무의식에 침투한 상실의 감정을 정교한 테크놀로지로 구현하는 시도가 나타난다. 그러나 이 작품에서 주목할 점은 결코 관객의 시각을 현혹하는 화려한 기술이 아니다. 오히려 이 작품은 첨 단의 테크놀로지를 매개로 가족을 잃은 등장인물의 심리적 외상을 심층적으로 표현하고 있다. 본고에서는 오페라 ≪기억의 재구성≫에서 동시대의 진보된 테크놀로지를 활용하여 ‘트라우마 와 기억’이라는 주제를 재현하는 독특한 내러티브 구조와 연출방식에 주목한다. 본 연구는 인물의 복잡한 심리에 탐닉하는 판데르아의 작품세계와 더불어 기술의 확산에 따라 동시대 공연예술 및 오페라에 나타난 변화를 짚어보는 것으로 출발한다. 이후 주인공이 겪는 트라우마 심리에 조응하 는 순환적 구성을 조명하고, 무대와 스크린을 활용하여 실재와 가상, 기억과 현실, 영화와 오페라 의 경계를 가로지르며 작품의 모티브를 형상화하는 연출 방식을 분석한다. 이를 통해 본 연구는 다양한 미디어를 활용하면서도 기술에 함몰되지 않고 전통 오페라에서 표현하기 어려웠던 심리적 주제를 구현해내는 동시대 오페라의 극적인 상상력을 탐색해본다.
A cold roll-bonding process is applied to fabricate an AA6061/AA5052/AA6061/AA5052 layered sheet. Two AA6061 and one AA5052 sheets of 2mm thickness, 40mm width and 300mm length are alternately stacked, then reduced to a thickness of 2.0 mm by multi-pass cold rolling after surface treatment such as degreasing and wire brushing. The rolling is performed at ambient temperature without lubricant using a 2-high mill with a roll diameter of 400 mm at a rolling speed of 6.0 m/sec. The roll-bonded AA6061/AA5052/AA6061/AA5052 layered sheet is then hardened by natural aging (T4) and artificial aging (T6) treatments. The microstructure of the as-roll bonded and the age-hardened Al sheets was revealed by SEM observation; the mechanical properties were investigated by tensile testing and hardness testing. After T4 and T6 aging treatment, the specimens had a recrystallization structure consisting of coarse equiaxed grains in both AA5052 and AA6061 regions. The as-roll-bonded specimen showed a clad structure in which the hardness of AA5052 regions was higher than that of AA6061 regions. However, after T4 and T6 aging treatment, specimens exhibited different structures, with hardness of AA6061 regions higher than that of AA5052 regions. Strengths of T6 and T4 age-treated specimens were found to increase by 1.55 and 1.36 times, respectively, compared to the value of the starting material.
Processing and characterization of graphene (Gr)-reinforced aluminium alloy 7075 (AA7075) microcomposites and nanocomposites are reported in this work. Composites are fabricated by mechanical alloying process at wet conditions. The bulk composites are prepared by uniaxial die pressing to get higher densification and sintered in an inert atmosphere. Density of the nanocomposites is higher than the microcomposites due to the reduction of grain size by increased milling time. X-ray diffraction (XRD) analysis confirms graphene interaction with the AA7075 matrix lattice spaces. The effective distribution of graphene with aluminium alloy is further confirmed by the Transmission Electron Microscopy (TEM) analysis. The hardness of the composites proportionally increases with the graphene addition owing to grain refinement. Wear morphology is characterized using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Microcomposites reveal abrasive and ploughing wear mechanism of material removal from the surface. Nanocomposites show adhesive wear with delamination and particle pull-out from the material surface.
A commercial AA1070 alloy for electrical wire is severely deformed by drawing process in which a rod with an initial diameter of 9mm into is reduced to a wire of 2mm diameter. The drawn AA1070 wire is then annealed at various temperatures from 200 to 450 oC for 2h. Changes in microstructure, mechanical properties and electrical properties of the specimens with annealing temperature are investigated in detail. The specimen begins partially to recrystallize at 250 oC; above 300 oC it is covered with equiaxed recrystallized grains over all regions. Fiber textures of {110}<111> and {112}<111> components are mainly developed, and {110}<001> texture is partially developed as well. The tensile strength tends to decrease with annealing temperature due to the occurrence of recovery or/and recrystallization. On the other hand, the elongation of the annealed wire increases with the annealing temperature, and reaches a maximum value of 33.3 % at 300 oC. Electric conductivity of the specimens increases with annealing temperature, and reaches a maximum value of 62.6%IACS after annealing at 450 oC. These results are discussed in comparison with those for the other aluminum alloy.
Recently, the use of non-ferrous metals has been increasing to lighten the weight of automobiles and parts. In particular, demand for non-ferrous alloy materials such as aluminum alloys and magnesium alloys is increasing. The purpose of this study is to calculate the optimization process of friction stir welding by using different materials of AA5052 and AA6061. By analyzing the reaction value of tensile strength and elongation by full factorial design and Custom Design Methodology. In other words, we analyzed the optimization process according to rotation speed, feed rate, tool angle and tool shape. In conclusion, the optimal process for tensile strength was achieved by using a tool with a rotation speed of 900 RPM, feed rate of 270, tool angle of 2.5° and a triangle tool. and The rotation speed was 1003 RPM, the feed rate was 314.5, tool angle of 1° and a triangle tool, it was able to get the maximum value of elongation when using a tool of the form.
본 연구는 LMO 유전산물의 위해성평가를 위해 바실러스로부터 증폭된 Vip3Aa 유전자를 이용하여 대장균에서 단백질 순수분리 하였으며, MALDI-TOP 분석법을 통해 기존의 알려진 살충성 Vip3Aa 단백질과 동등한 단백질임을 증명하였다. 순수 분리한 Vip3Aa 단백질을 이용하여 꿀벌 과독성 급성섭식독성평가를 수행하였다. 그 결과 무처리군, Hepes buffer, Vip3Aa 단백질 처리군 모두 치사 및 일반 중독증상을 보이는 개체는 발견되지 않았다. 이 결과를 통해 Vip3Aa 단백질은 꿀벌에 위해성을 나타내지 않는다는 결론을 얻을 수 있었다. 본 연구 결과는 향후 국내 LMO 유전자산물 위해성평가에 유용하게 활용될 것이라 사료 된다.
The purpose of this study was to compare the effects of soaking and ultrasonic extraction by observing the change of contents with extraction time of physicochemical properties (solid content, colorness, caffeine, chlorogenic acid, total polyphenols, DPPH, and ABTS). As a result of the analysis, solid content increased with longer extraction time and the whiteness tended to decrease with longer extraction time. Conversely, the extraction of functional materials showed a tendency to increase as the extraction time increased. Caffeine reached the maximum value after two hours soaking, but showed the same result as one hour for sonication. Chlorogenic acid did not show difference from the content of coffee extracted for one hour soaking only by sonication extraction for 30 minutes. The total polyphenols eluted with approximately two hours of soaking even after 30 minutes of sonication. DPPH and ABTS were insignificant in their concentrations, but their antioxidative effect was more than two hours of soaking with only 30 minutes of sonication. Sonication has a short time extraction from a functional aspect (caffeine content, chlorogenic acid, polyphenol content, and antioxidant capacity) and this experiment can provide basic data for the development of innovative recipes.
An artificial neural network (ANN) model is developed for the analysis and simulation of correlation between flake powder metallurgy parameters and properties of AA2024-SiC nanocomposites. The input parameters of the model are AA 2024 matrix size, ball milling time, and weight percentage of SiC nanoparticles and the output parameters are density and hardness. The model can predict the density and hardness of the unseen test data with a correlation of 0.986 beyond the experimental data. A user interface is designed to predict properties at new instances. We have used the model to simulate the individual as well as the combined influence of parameters on the properties. Moreover, we have analyzed the calculated results from the powder metallurgical point of view. The developed model can be used as a guide for further composite development.
A cold roll-bonding process is applied to fabricate an AA6061/AA5052/AA6061 three-layer clad sheet. Two AA6061 and one AA5052 sheets of 2 mm thickness, 40 mm width, and 300 mm length are stacked, with the AA5052 sheet located in the center. After surface treatment such as degreasing and wire brushing, sample is reduced to a thickness of 1.5 mm by multi-pass cold rolling. The rolling is performed at ambient temperature without lubricant using a 2-high mill with a roll diameter of 400 mm at rolling speed of 6.0 m/sec. The roll bonded AA6061/AA5052/AA6061 complex sheet is then hardened by natural aging(T4) and artificial aging(T6) treatments. The microstructures of the as-roll bonded and age-hardened Al complex sheets are revealed by optical microscopy; the mechanical properties are investigated by tensile testing and hardness testing. After rolling, the roll-bonded AA6061/AA5052/AA6061 sheets show a typical deformation structure in which grains are elongated in the rolling direction. However, after T4 and T6 aging treatment, there is a recrystallization structure consisting of coarse equiaxed grains in both AA5052 and AA6061 sheets. The as roll-bonded specimen shows a sandwich structure in which an AA5052 sheet is inserted into two AA6061 sheets with higher hardness. However, after T4 and T6 aging treatment, there is a different sandwich structure in which the hardness of the upper and lower layers of the AA6061 sheets is higher than that of the center of the AA5052 sheet. The strength values of the T4 and T6 age-treated specimens are found to increase by 1.3 and 1.4 times, respectively, compared to that value of the starting material.
To fabricate the 5182 aluminum-polymer sandwich panels, the strength of 5182 aluminum panels, which are the skin sheets that constitutes the sandwich composite panels, is changed according to the degree of heat treatment after rolling, and the characteristics of sandwich panel are also changed. In addition, in the stress-strain curves of the sandwich panel, the serration behavior observed in the 5182 aluminum alloy sheet is also observed. This serration behavior causes surface roughness during sheet forming, which is a serious problem in application to automotive body sheet. In this study, the tensile properties of the 5182 aluminum sandwich panels at room and elevated temperature were carefully investigated by tensile test. It can be found that when the aluminum surface sheets having insufficient heat treatment time is applied, the serration behavior does not completely disappear from the temperature of the room temperature to 160℃.