검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 915

        61.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the following conclusions were obtained after friction stir welding of Al 6061-T651. 1) The organization of the welding unit is largely divided into four parts, the Stir zone, themal-mechanical affected zone, heat affected zone, it was confirmed that it is clearly separated into the material portion. 2) As a result of observing the hardness test results of the welding unit, the minimum hardness value was about 45Hv, which was significantly lower than the hardness of the base material about 72Hv. 3) The tensile strength of the welding part was about 2/3 compared to the tensile strength of the base material.
        4,000원
        62.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The cutting quality of abrasive water jet cutting of aluminum alloy(Al-5083) for shipbuilding is affected by the surface roughness, cutting pressure, cutting speed, and the distance between nozzle and material. The cross-section of water jet cutting is formed a V-shape as the cutting speed increase. The upper width(kerf width) is wide and the lower surface is narrow. The width of cutting cross-sections are effected in the order of cutting speed, cutting pressure, and distance between nozzle and material. From the experimental results, to improve of cutting quality of abrasive water jet cutting of aluminum alloy(Al-5083) for shipbuilding, the optimal cutting conditions to improve the surface roughness and kef width are proposed and discussed.
        4,000원
        63.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The process optimization of directed energy deposition (DED) has become imperative in the manufacture of reliable products. However, an energy-density-based approach without a sufficient powder feed rate hinders the attainment of an appropriate processing window for DED-processed materials. Optimizing the processing of DEDprocessed Ti-6Al- 4V alloys using energy per unit area (Eeff) and powder deposition density (PDDeff) as parameters helps overcome this problem in the present work. The experimental results show a lack of fusion, complete melting, and overmelting regions, which can be differentiated using energy per unit mass as a measure. Moreover, the optimized processing window (Eeff = 44~47 J/mm2 and PDDeff = 0.002~0.0025 g/mm2) is located within the complete melting region. This result shows that the Eeff and PDDeff-based processing optimization methodology is effective for estimating the properties of DED-processed materials.
        4,000원
        64.
        2021.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The precipitation effect of Al-6%Si-0.4%Mg-0.9%Cu-(Ti) alloy (in wt.%) after various heat treatments was studied using a laser flash device (LFA) and differential scanning calorimetry (DSC). Solid solution treatment was performed at 535 oC for 6 h, followed by water cooling, and samples were artificially aged in air at 180 oC and 220 oC for 5 h. The titanium-free alloy Al-6%Si-0.4%Mg-0.9%Cu showed higher thermal diffusivity than did the Al-6%Si-0.4%Mg-0.9%Cu-0.2%Ti alloy over the entire temperature range. In the temperature ranges below 200 oC and above 300 oC, the value of thermal diffusivity decreased with increasing temperature. As the sample temperature increased between 200 oC and 400 oC, phase precipitation occurred. From the results of DSC analysis, the temperature dependence of the change in thermal diffusivity in the temperature range between 200 oC and 400 oC was strongly influenced by the precipitation of θ'-Al2Cu, β'-Mg2Si, and Si phases. The most important factor in the temperature dependence of thermal diffusivity was Si precipitation.
        4,000원
        67.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present work, Inconel 718 alloy is additively manufactured on the Ti-6Al-4V alloy, and a functionally graded material is built between Inconel 718 and Ti-6Al-4V alloys. The vanadium interlayer is applied to prevent the formation of detrimental intermetallic compounds between Ti-6Al-4V and Inconel 718 by direct joining. The additive manufacturing of Inconel 718 alloy is performed by changing the laser power and scan speed. The microstructures of the joint interface are characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and micro X-ray diffraction. Additive manufacturing is successfully performed by changing the energy input. The micro Vickers hardness of the additive manufactured Inconel 718 dramatically increased owing to the presence of the Cr-oxide phase, which is formed by the difference in energy input.
        4,000원
        68.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ti-6Al-4V alloy has a wide range of applications, ranging from turbine blades that require smooth surfaces for aerodynamic purposes to biomedical implants, where a certain surface roughness promotes biomedical compatibility. Therefore, it would be advantageous if the high volumetric density is maintained while controlling the surface roughness during the LPBF of Ti-6Al-4V. In this study, the volumetric energy density is varied by independently changing the laser power and scan speed to document the changes in the relative sample density and surface roughness. The results where the energy density is similar but the process parameters are different are compared. For comparable energy density but higher laser power and scan speed, the relative density remained similar at approximately 99%. However, the surface roughness varies, and the maximum increase rate is approximately 172%. To investigate the cause of the increased surface roughness, a nonlinear finite element heat transfer analysis is performed to compare the maximum temperature, cooling rate, and lifetime of the melt pool with different process parameters.
        4,000원
        69.
        2021.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The impact properties of two austenitic Fe-23Mn-0.4C steels with different Al contents for cryogenic applications are investigated in this study. The 4Al steel consists mostly of austenite single-phase microstructure, while the 5Al steel exhibits a two-phase microstructure of austenite and delta-ferrite with coarse and elongated grains. Charpy impact test results reveal that the 5Al steel with duplex phases of austenite and delta-ferrite exhibits a ductile-to-brittle transition behavior, while the 4Al steel with only single-phase austenite has higher absorbed energy over 100 J at -196 oC. The SEM fractographs of Charpy impact specimens show that the 4Al steel has a ductile dimple fracture regardless of test temperature, whereas the 5Al steel fractured at -100 oC and -196 oC exhibits a mixed fracture mode of both ductile and brittle fractures. Additionally, quasi-cleavage fracture caused by crack propagation of delta-ferrite phase is found in some regions of the brittle fracture surface of the 5Al steel. Based on these results, the delta-ferrite phase hardly has a significant effect on absorbed energy at room-temperature, but it significantly deteriorates low-temperature toughness by acting as the main site of the propagation of brittle cracks at cryogenic-temperatures.
        4,000원
        70.
        2021.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The oxidation resistance of the diffusion aluminide bond coat (BC) is compromised largely by interdiffusion (ID) effects on coated turbine blades of aeroengines. The present study is designed to understand the influence of ID on βNiAl coatings or BC. In this regard, nickel substrate and CMSX-4 superalloy are deposited. In total, four sets of BCs are developed, i.e. pure βNiAl (on Ni substrate), simple βNiAl (on CMSX-4 substrate), Zr-βNiAl (on CMSX-4 substrate) and Pt-βNiAl (on CMSX-4 substrate). The main aim of this study is to understand the interdiffusion of Al, Zr and Pt during preparation and oxidation. In addition, the beneficial effects of both Zr and platinum are assessed. Pure βNiAl and simple βNiAl show Ni-outdiffusion, whereas for platinum inward diffusion to the substrate is noticed under vacuum treatment. Interestingly, Zr-βNiAl shows the least ID in all BCs and exhibit stability under both vacuum and oxidation treatments. However, its spallation resistance is slightly lower than that of Pt-βNiAl BC. All BCs show similar oxide growth trends, except for Zr-βNiAl, which exhibits two-stage oxidations, i.e. transient and steady-state. Moreover, it is suggested that the localized spallation in all BCs is caused by βNiAl - γ’-Ni3Al transformation.
        4,000원
        71.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the performance was checked and the optimal conditions were found by machining the inner surface of a round pipe using the magnetic abrasive finishing method. In this experiment, an AL 6063 pipe was used as a sample. To check the performance of magnetic abrasive finising, the machining effect of different abrasive particle mixing ratio, rotation speed, and magnetic pole arrangement was analyzed through surface roughness (Ra) and weight removal measurement. The optimum mixing ratio was 3:1 of electrolytic iron to magnetic abrasive particles, the rotational speed was 1600rpm, and the best surface roughness was obtained in the N-S-N arrangement of magnetic poles.
        4,000원
        72.
        2021.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Composite materials offer distinct and unique properties that are not naturally inherited in the individual materials that make them. One of the most attractive composites to manufacture is the aluminum alloy matrix composite, because it usually combines easiness of availability, light weight, strength, and other favorable properties. In the current work, Powder Metallurgy Method (PMM) is used to prepare Al2024 matrix composites reinforced with different mixing ratios of yttrium oxide (Y2O3) particles. The tests performed on the composites include physical, mechanical, and tribological, as well as microstructure analysis via optical microscope. The results show that the experimental density slightly decreases while the porosity increases when the reinforcement ratio increases within the selected range of 0 ~ 20 wt%. Besides this, the yield strength, tensile strength, and Vickers hardness increase up to a 10 wt% Y2O3 ratio, after which they decline. Moreover, the wear results show that the composite follows the same paradigm for strength and hardness. It is concluded that this composite is ideal for application when higher strength is required from aluminum composites, as well as lighter weight up to certain values of Y2O3 ratio.
        4,000원
        73.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminium metal matrix composites (AMMCs) are the fastest developing materials for structural applications due to their high specific weight, modulus, resistance to corrosion and wear, and high temperature strength. Carbon nanotubes (CNTs) is known as the material of the twenty-first century for its various applications in structural components for their high specific strength as well as functional materials for their exciting thermal and electrical characteristics. The present study comprise a systematic literature review of Al/CNT nanocomposites fabricated through a solid state friction stir processing. The present review is primarily focussed on the dispersion and survivability of CNTs in the Al matrix because these are the key factors in deciding the mechanical properties of the fabricated composite. Additionally, the formability, weldability and machinability of the FSPed fabricated composites reinforced with CNTs are also summarised here. Based on the detailed literature review, following research gaps are identified which require a critical and more focussed attention of the scientific community working in this research area: (i) the presence of agglomeration or clustering of CNTs in the composite, (ii) survivability and shortening of CNTs during FSP, (iii) interfacial reactions or the formation of reaction products (such as Al4C3) between Al matrix and CNTs, and (iv) the unidirectional alignment of CNTs in the fabricated composite. Important suggestions for further research in effective dispersion of CNTs with its preserved structure by FSP are also provided.
        7,800원
        74.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ni–Cr–Al metal-foam-supported catalysts for steam methane reforming (SMR) are manufactured by applying a catalytic Ni/Al2O3 sol–gel coating to powder alloyed metallic foam. The structure, microstructure, mechanical stability, and hydrogen yield efficiency of the obtained catalysts are evaluated. The structural and microstructural characteristics show that the catalyst is well coated on the open-pore Ni–Cr–Al foam without cracks or spallation. The measured compressive yield strengths are 2–3 MPa at room temperature and 1.5–2.2 MPa at 750oC regardless of sample size. The specimens exhibit a weight loss of up to 9–10% at elevated temperature owing to the spallation of the Ni/Al2O3 catalyst. However, the metal-foam-supported catalyst appears to have higher mechanical stability than ceramic pellet catalysts. In SMR simulations tests, a methane conversion ratio of up to 96% is obtained with a high hydrogen yield efficiency of 82%.
        4,000원
        77.
        2021.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Al-Cr-Si ternary quench ribbons are fabricated using a single roll method and investigated for their structural and thermal properties. In particular, the sinterability is examined by pulse current sintering to obtain the following results. The Al74Cr20Si6 composition becomes a quasicrystalline single phase; by reducing the amount of Cr, it becomes a twophase mixed structure of Al phase and quasicrystalline phase. As a result of sintering of Al74Cr20Si6, Al77Cr13Si10 and Al90Cr6Si4 compositions, the sintering density is increased with the large amount of Al phase; the sintering density is the highest in Al90Cr6Si4 composition. In addition, as a result of investigating the effects of sintering temperature and pressurization on the sintered density of Al90Cr6Si4, a sintered compact of 99% or more at 513 K and 500 MPa is produced. In particular, since the Al-Cr-Si ternary crystal is more thermally stable than the Al-Cr binary quaternary crystal, it is possible to increase the sintering temperature by about 100 K. Therefore, using an alloy of Al90Cr6Si4 composition, a sintered compact having a sintered density of 99 % or more at 613 K and 250 MPa can be manufactured. It is possible to increase the sintering temperature by using the alloy system as a ternary system. As a result, it is possible to produce a sintered body with higher density than that possible using the binary system, and at half the pressure compared with the conventional Al-Cr binary system.
        4,000원
        78.
        2021.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Wire arc additive manufacturing (WAAM) is being considered as a technology to replace the conventional manufacturing process of titanium alloys. However, coarse β grains, which can extend through several deposited materials, result in strong textures and anisotropy. As a solution, we study the plastic deformation effects of ultrasonic needle peening (UNP) on the microstructure. UNP treated materials deform plastically and the dislocation density increases. Fine α+α' grains with low aspect ratio are observed in the UNP treated specimens. UNP treated WAAM Ti-6Al-4V alloys have higher strength and lower elongation than those characteristics of WAAM Ti-6Al-4V alloys. Due to UNP treatment, the z-axis directional specimens exhibit a greater effect of reducing elongation than do the x-axis directional specimens. The UNP treatment produces fine grains in proportion to the number of times UNP is performed, thereby increasing strength. UNP processes produce a large number of dislocations in the WAAM Ti-6Al-4V alloys, with the most dislocations being formed at the surface.
        4,000원
        80.
        2021.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Cr-Si based alloys are not only excellent in corrosion resistance at high temperatures, but also have good wear resistance due to the formation of Cr3Si phase, therefore they are promising as metallic coating materials. Aluminum is often added to Cr-Si alloys to improve the oxidation resistance through which stable alumina surface film is formed. On the other hand, due to the addition of aluminum, various Al-containing phases may be formed and may negatively affect the heat resistance of the Cr-Si-Al alloys, so detailed investigation is required. In this study, two Cr-Si-Al alloys (high-Si & high-Al) were prepared in the form of cast ingots through a vacuum arc melting process and the microstructural changes after high temperature heating process were investigated. In the case of the cast high-Si alloy, a considerable amount of Cr3Si phase was formed, and its hardness was significantly higher than that of the cast high-Al alloy. Also, Al-rich phases (with the high Al/ Cr ratio) were not found much compared to the high-Al alloy. Meanwhile, it was observed that the amount of the Al-rich phases reduced by the annealing heat treatment for both alloys. In the case of the high temperature heating at 1,400 oC, no significant microstructural change was observed in the high Si alloy, but a little more coarse and segregated AlCr phases were found in the high Al alloy compared to the cast state.
        4,000원
        1 2 3 4 5