It has been studied that the aluminum extrusion with the ingot-recycled composite billet that is casted. The billet is composed of the inner rod with the recycled and the outer ring with the ingot aluminum. For easy producing the tensile specimens to evaluate the bonding strength between recycled and ingot material, the extrusion die was designed. Two types of the billet are extruded. One is a composite billet that is casted. The other is an assembled billet with the turned bars. The strength is measured from tensile tests with extruded specimens. The effect on the strength of the oxidized layer between the materials has been researched with EDS analysis.
In this study, the extrusion process of 6xxx series aluminum cast alloy for high speed train interior or exterior parts are developed. For casting, selection of optimum alloying elements, dissolution technology, de-gassing process, production of molds conforming to the conditions of use, development of casting process control technology for various shapes and materials are performed for the development of high-quality, high strength aluminum alloys. The development of more high farmable extruded aluminum casting alloys for interior or exterior materials has been the scope of this study. The extruded die design was performed for the 6063, 6061 and 6N01 alloy profiles and extrusion test was executed. From these results, the extrusion conditions such as extrusion pressure following as billet temperature and materials were carefully examined.
Bridge inspection structures are the structure which is installed on the piers, abutments, and copings for the inspection and maintenance of substructure. In this study, the structural performance of the bridge inspection structures using aluminum members manufactured by extrusion process is evaluated. The bridge inspection structures can be installed regardless of the shape of concrete surface through the simple cutting process. The structural performance of bridge inspection structures is evaluated using FE analysis. Moreover, experimental studies are conducted for the estimation of the structural safety of the members for the design load.
In this study, the heat flow of the plant scale aluminum extrusion process was investigated to establish optimum continuous heat treatment conditions. During the extrusion of 6061 aluminum alloy, processing parameters such as the extrusion pressure, speed and temperature histories of billets were logged as a function of time. The surface temperature of the billets increased at constant ram speed, while it decreased with decreases of the ram speed. In order to maintain the billet temperature within a solutionizing temperature range prior to the succeeding water quenching step, the ram speed or the temperature of the blower should be controlled. The temperature histories of the billets during the extrusion and hot air blowing processes were successfully simulated by using the velocity boundary model in ANSYS CFX. The methodology to design an optimum process by using a commercial simulation program is described in this study on the basis of the metallurgical validation results of the microstructural observation of the extrudates. The developed model allowed the advantages of taking into account the motion of the extrudate coupled with the temperature change based on empirical data. Calculations were made for the extrudate passing through the isothermal chamber maintained at appropriate temperature. It was confirmed that the continuous heat treatment system is beneficial to the productivity enhancement of the commercial aluminum extrusion industry.
Aluminum alloys are not only lightweight materials, but also have excellent thermal conductivity, electrical conductivity and workability, hence, they are widely used in industry. It is important to control and enhance the densification behavior of metal powders of aluminum. Investigation on the extrusion processing combined with equal channel angular pressing for densification of aluminum powders was performed in order to develop a continuous production process. The continuous processing achieved high effective strain and full relative density at . Optimum processing conditions were suggested for good mechanical properties. The results of this simulation helped to understand the distribution of relative density and effective strain.
샌드위치 판은 질량에 비해 높은 강성과 강도를 갖고 있으므로 매우 효율적인 구조재로서 폭넓게 쓰이고 있다. 알루미늄 압출 샌드위치 판의 적절한 설계를 위하여는 역학적 거동 해석이 선행되어야 하나, 아직 이에 대한 연구는 미비한 상태이다. 코어가 채워져 있지 않은 중공 단면(hollow section)인 샌드위치 판의 역학적 거동 해석에는 일반적으로 상세 유한 요소 해석을 하게되나, 이는 모델링과 해석에 많은 시간이 소요된다. 본 논문에서는 트러스(truss) 형상의 심재를 갖는 샌드위치 구조 압출재를 이방성의 판으로 치환하여 해석하는 방법을 제시하였다 적절한 이방성 후판으로의 치환을 위해 등가의 강성을 평가하는 방법을 제안하였으며, 이 등가의 강성을 판 이론에 적용하여 균일 분포 하중을 받는 사변 단순지지 조건의 알루미늄 압출재에 대한 처짐과 응력에 대해 간이 해석식을 개발하였다. 아울러 상용 유한 요소 프로그램을 이용하여 계산한 결과와 비교한 결과 제시한 간이식의 높은 정도와 효율성이 입증되었다.
The present study is concerned with the hydrostatic extrusion process of copper-clad aluminum rod through metallurgical joining. In this study, the rigid plastic finite element program, HICKORY, is used to analyze the steady state extrusion process of the bimetal rod. Simulations are performed for copper-clad aluminum rod with several extrusion ratio to give the distributions of effective strain rate, equivalent stress and hardness. Experiments are also carried out for aluminum-inserted copper rod at room temperature. It is found out that finite element predictions are generally in good agreement with the experimental observations. The detail comparison of the extrusion loads by the finite element method with those by experiments are given.