Speed management in Korea currently emphasizes the setting of speed limits and controlling vehicle speeds to align with these standards. However, monitoring safe and stable speeds tailored to specific road sections is essential for enhancing pedestrian safety in urban areas. In this study, a crash frequency model was developed to define the speed stability range and identify the critical threshold at which the crash frequency changes rapidly. This threshold serves as a reference point for assessing the speed stability levels. Individual vehicle trajectory data collected from 20 road segments in Daejeon-si were used to calculate the speed-related safety evaluation indicators that served as input variables for the safety model. The speed stability range calculation incorporates speed-related indicators and road facility data from Daejeon-si, allowing the model to consider the surrounding infrastructure. The findings revealed that intersections and crosswalks are positively correlated with cumulative crash occurrences. Crash frequency predictions showed higher crash likelihoods at average driving speeds below 30 km/h, indicating that congested conditions at intersections or at peak times necessitate increased safety management. Measures for maintaining safe and appropriate vehicle speeds within identified safe ranges are critical. The speed stability range calculation methodology provides a foundation for establishing traffic safety management strategies that focus on speed control in urban areas. These results can guide the development of targeted safety interventions that prioritize pedestrian protection and optimize safe driving speeds across various road segments.
The increase in radioactive waste increased the demand for transportation to the disposal facility. Prior to transporting radioactive waste, confirming that the potential exposure is insignificant is crucial. Overland transportation risk assessment models were developed tailored to domestic characteristics. Dose assessment using this model requires selecting appropriate factors. However, users may struggle to derive appropriate values, leading to inaccuracies. Additionally, if assessment results show outliers, prioritizing factors for review can be challenging. Therefore, sensitivity analysis is necessary to prioritize factors for accurate assessment. In this study, sensitivity analysis was conducted on the on-link public risk assessment model factors for radioactive waste overland transportation. Initially, assessment models were analyzed by each detailed exposure scenario. Subsequently, uncertainty propagation-based sensitivity analysis methodology was applied. The default values for the assessment model factors were set, and sensitivity analysis was conducted based on road type for maximum individual and collective dose assessment models. For the maximum individual dose model, the distance to the samedirection vehicle was the most sensitive, whereas for the collective dose model, vehicle velocity was the most sensitive. The results of this study can be used as the basic data on radioactive waste transportation risk assessment in Korea in the future.
해상 운송 시스템에 사이버 위협이 증가함에 따라, 안전한 운항을 보장하기 위한 사이버 복원력의 필요성이 부각되고 있다. 특 히, 자율운항선박과 같은 고도의 기술 융합이 요구되는 스마트선박은 기존보다 더 광범위한 사이버 공격 표면을 가지게 되어 이에 대한 리스크 관리가 필수적이다. 본 연구에서는 스마트선박의 사이버 복원력을 평가하기 위해 국제 표준인 IACS UR E26, E27, IEC 62443, NIST SP 800-160을 분석하고, 이를 통해 스마트선박의 선종과 자율화 수준에 따른 사이버 리스크 평가 및 각각의 리스크에 맞는 복원력 모델 개념을 설계하였다. 특히, 선박의 자율화 수준이 높아질수록 사이버 리스크가 커지므로 이를 반영한 맞춤형 대응 전략을 도출하고 스마트 선박의 사이버 복원력 향상을 위한 성숙도 모델을 제안했다.
Maintaining sea superiority through successful mission accomplishments of warships is being proved to be an important factor of winning a war, as in the Ukraine-Russia war. in order to ensure the ability of a warship to perform its duties, the survivability of the warship must be strengthened. In particular, among the survivability factors, vulnerability is closely related to a damage assessment, and these vulnerability data are used as basic data to measure the mission capability. The warship's mission capability is usually measured using a wargame model, but only the operational effects of a macroscopic view are measured with a theater level resolution. In order to analyze the effectiveness and efficiency of a weapon system in the context of advanced weapon systems and equipments, a warship's mission capability must be measured at the engagement level resolution. To this end, not the relationship between the displacement tonnage and the weight of warheads applied in the theater level model, but an engagement level resolution vulnerability assessment method that can specify physical and functional damage at the hit position should be applied. This study proposes a method of measuring a warship’s mission capability by applying the warship vulnerability assessment method to the naval engagement level analysis model. The result can be used as basic data in developing engagement algorithms for effective and efficient operation tactics to be implemented from a single unit weapon system to multiple warships.
of hazardous risk factors, risk estimation and determination steps by reflecting the trend of overseas risk assessment. METHODS : In deriving, estimating and determining risk factors, comparing the procedures presented by the ILO with the domestic guidline to find out the differences in procedural. and, According to the domestic manual, after setting the criteria for determining a deterministic perspective, analyze the risk assessment data of a specific domestic company and three overseas risk assessment research data to analyze the differences in methodology domestic and abroad. RESULTS : Within the country, there is a possibility that a deterministic view may be applied to all stages of procedure, and certain corporate data to the risk estimation and determination stage. In the case of overseas, the trend of applying deterministic perspectives to the risk determination stage was confirmed. CONCLUSIONS : Present the need for a standard model for improving deterministic methods in the other two stages, excluding risk determination in the domestic evaluation procedure.
Velvet antler is widely used as a traditional medicine, and numerous studies have demonstrated its tremendous nutritional and medicinal values including immunity-enhancing effects. This study aimed to investigate different deer velvet extracts (Sample 1: raw extract, Sample 2: dried extract, and Sample 3: freeze-dried extract) for proximate composition, uronic acid, sulfated glycosaminoglycan, sialic acid, collagen levels, and chemical components using ultra-performance liquid chromatography-quadrupole-time-of-light mass spectrometry. In addition, we evaluated the cytotoxic effect of the deer velvet extracts on BV2 microglia, HT22 hippocampal cells, HaCaT keratinocytes, and RAW264.7 macrophages using the cell viability MTT assay. Furthermore, we evaluated acute toxicity of the deer velvet extracts at different doses (0, 500, 1000, and 2000 mg/kg) administered orally to both male and female ICR mice for 14 d (five mice per group). After treatment, we evaluated general toxicity, survival rate, body weight changes, mortality, clinical signs, and necropsy findings in the experimental mice based on OECD guidelines. The results suggested that in vitro treatment with the evaluated extracts had no cytotoxic effect in HaCaT keratinocytes cells, whereas Sample-2 had a cytotoxic effect at 500 and 1000 μg/mL on HT22 hippocampal cells and RAW264.7 macrophages. Sample 3 was also cytotoxic at concentrations of 500 and 1000 μg/mL to RAW264.7 and BV2 microglial cells. However, the mice treated in vivo with the velvet extracts at doses of 500–2000 mg/kg BW showed no clinical signs, mortality, or necropsy findings, indicating that the LD50 is higher than this dosage. These findings indicate that there were no toxicological abnormalities connected with the deer velvet extract treatment in mice. However, further human and animal studies are needed before sufficient safety information is available to justify its use in humans.
The effect of various physicochemical processes, such as seawater intrusion, on the performance of the engineered barrier should be closely analyzed to precisely assess the safety of high-level radioactive waste repository. In order to evaluate the impact of such processes on the performance of the engineered barrier, a thermal-hydrological-chemical model was developed by using COMSOL Multiphysics and PHREEQC. The coupling of two software was achieved through the application of a sequential non-iterative approach. Model verification was executed through a comparative analysis between the outcomes derived from the developed model and those obtained in prior investigations. Two data were in a good agreement, demonstrating the model is capable of simulating aqueous speciation, adsorption, precipitation, and dissolution. Using the developed model, the geochemical evolution of bentonite buffer under a general condition was simulated as a base case. The model domain consists of 0.5 m of bentonite and 49.5 m of granite. The uraninite (UO2) was assigned at the canister-bentonite interface as the potential source of uranium. Assuming the lifetime of canister as 1,000 years, the porewater mixing without uranium leakage was simulated for 1,000 years. After then, the uranium leakage through the dissolution of uraninite was initiated and simulated for additional 1,000 years. In the base case model, where the porewater mixing between the bentonite and granite was the only considered process, the gypsum tended to dissolve throughout the bentonite, while it precipitated in the vicinity of bentonite-granite boundary. However, the precipitation and dissolution of gypsum only showed a limited effect on the performance of the bentonite. Due to the low solubility of uraninite in the reduced environment, only infinitesimal amounts of uranium dissolved and transported through the bentonite. Additional cases considering various environmental processes, such as seawater or cement porewater intrusion, will be further investigated.
Since the first operation of the Gori No. 1 nuclear power plant in Korea was started to operate in 1978, currently 24 nuclear power plants have been being operated, out of which 21 plants are PWR types and the rest are CANDU types. About 30% of total electricity consumed in Korea is from all these nuclear power plants. The accumulated spent nuclear fuels (SFs) generated from each site are temporarily being stored as wet or dry storage type at each plant site. These SFs with their high radiotoxicity, heat generating, and long-lived radioactivity are actually the only type of high-level radioactive waste (HLW) in Korea, which urgently requires to be disposed of in deep geological repository. Studies on disposal of HLW in various kind of geological repositories have been carried out in such countries as Sweden, Finland, United States, and etc. with their own methodologies and management policies in consideration of their situations. In Korea long-term R&D research program for safe management of SF has also been conducted during last couple of decades since around 1997, during which several various alternative type of disposal concepts for disposal of SNFs in deep geological formations have been investigated and developed. The first concept developed was KAERI Reference Disposal System (KRS) which is actually very much similar to Swedish KBS-3, a famous concept of direct disposal of SF in stable crystalline rock at a depth of around 500 m which has been regarded as one of the most plausible method worldwide. The world first Finnish repository which is expected to begin to operate sooner or later will be also this type. Since the characteristics of SF discharged from domestic nuclear reactors have been changed and improved, and burnup has sometimes increased, a more advanced deep geological repository system has been needed, KRS-HB (KRS with High Burnup SF) has been developed and in consideration of the dimensions of SNFs and the cooling period at the time point of the disposal time, KRS+, a rather improved disposal concept has also been subsequently developed which is especially focused on the efficient disposal area. Recently research has concentrated on rather advanced disposal technology focused on a safer and more economical repository system in recent view of the rapidly growing amount of accumulated SF. Especially in Korea the rock mass and the footprint area for the repository extremely limited for disposal site. Some preliminary studies to achieve rather higher efficiency repository concept for disposal of SF recently have already been emphasized. Among many possible ones for consideration of design for high-efficiency repository system, a double-layered system has been focused which is expected to maximize disposal capacity within the minimum footprint disposal area. Based on such disposal strategy a rather newly designed performance assessment methodology might be required to show long-term safety of the repository. Through the study some prerequisites for such methodological development has been being roughly checked and investigated, which covers FEP identification and pathway and scenario analyses as well as preliminary conceptual modeling for the nuclide release and transport in nearfield, far-field, and even biosphere in and around the conceptual repository system. Through the study such scenarios and models has been implemented to development of a safety assessment by utilizing GoldSim development tool for a rough quantitative comparison with existing disposal options and simple illustration purpose as well as for showing how to develop and implementation of the model to GoldSim templet.
This study proposes a methodology for assessing seismic liquefaction hazard by implementing high-resolution three-dimensional (3D) ground models with high-density/high-precision site investigation data acquired in an area of interest, which would be linked to geotechnical numerical analysis tools. It is possible to estimate the vulnerability of earthquake-induced geotechnical phenomena (ground motion amplification, liquefaction, landslide, etc.) and their triggering complex disasters across an area for urban development with several stages of high-density datasets. In this study, the spatial-ground models for city development were built with a 3D high-precision grid of 5 m x 5 m x 1 m by applying geostatistic methods. Finally, after comparing each prediction error, the geotechnical model from the Gaussian sequential simulation is selected to assess earthquake-induced geotechnical hazards. In particular, with seven independent input earthquake motions, liquefaction analysis with finite element analyses and hazard mappings with LPI and LSN are performed reliably based on the spatial geotechnical models in the study area. Furthermore, various phenomena and parameters, including settlement in the city planning area, are assessed in terms of geotechnical vulnerability also based on the high-resolution spatial-ground modeling. This case study on the high-precision 3D ground model-based zonations in the area of interest verifies the usefulness in assessing spatially earthquake-induced hazards and geotechnical vulnerability and their decision-making support.
RUCAS (Recycling-Underlying Computational Dose Assessment System), a dose assessment program based on the RESRAD-RECYCLE framework, is designed to evaluate dose for recycling scenarios of radioactive waste in metals and concrete. To confirm the validity of the recycling scenarios provided by RUCAS, comparative evaluations will be conducted with RESRAD-RECYCLE for metal radioactive waste recycling scenarios and with MicroShield® for concrete radioactive waste recycling scenarios. In the evaluation of metal recycling scenarios without shielding, RUCAS showed similar results when compared to both MicroShield® and RESRAD-RECYCLE. This validates the function of dose assessments using RUCAS for metal recycling scenarios. However, when shielding was present, RUCAS produced results that were comparable to MicroShield®, but differed from those of RESRAD-RECYCLE. The underestimation of dose values up to 1.66E+08 times difference by RESRAD-RECYCLE could potentially decrease reliability and safety in evaluated doses, further emphasizing the importance of RUCAS. Because validation is also necessary for the expanded calculation capabilities resulting from methodological changes of RUCAS (i.e., various radiation source geometries), based on prior validations, it was determined that additional validations are required for different radiation source materials and shielding conditions. In case where the radiation source and shielding materials were identical, RUCAS and MicroShield® produced similar results according to both the Kalos et al. (1974) and Lin and Jiang (1996) methodologies. This demonstrates that the that differences in methodology are inconsequential when considering the same source and shielding materials. However, when the atomic number of the radiation source materials was larger than that of shielding material (HZ-LZ condition), RUCAS obtained results similar to MicroShield® only for the Kalos et al. (1974) methodology. While Lin and Jiang (1996) methodology yield higher results than MicroShield®. Lastly, in case where the atomic number of the radiation source material was smaller than that of the shielding material (LZ-HZ condition,) both methodologies yielded results comparable to MicroShield®. In conclusion, the validity of RUCAS’s shielding calculations has been verified, confirming improvements in dose assessment compared to RESRAD-RECYCLE. Additionally, we observed that shielding effectiveness calculations differ depending on the methodology of build-up effect. If the validity of these methodologies is confirmed, it is expected that selecting the most advantageous methodology for each condition will enable more rational dose assessments. Consequently, in future research, we plan to evaluate the validity of Lin and Jiang (1996) methodology using particle transport codes based on the Monte Carlo method, such as MCNP and Geant 4, rather than MicroShield®.
The Korean Nuclear Safety and Security Commission has established a general guideline for the disposal of high-level waste, which requires that radiological effects from a disposal facility should not exceed the regulatory safety indicator, a radiological risk. The post-closure safety assessment of the disposal facility aims to evaluate the radiological dose against a representative person, taking into account nuclide transport and exposure pathways and their corresponding probabilities. The biosphere is a critical component of radiation protection in a disposal system, and the biosphere model is concerned with nuclide transport through the surface medium and the doses to human beings due to the contaminated surface environment. In past studies by the Korea Atomic Energy Research Institute (KAERI), the biosphere model was constructed using a representative illustration of surface topographies and groundwater conditions, assuming that the representative surface environment would not change in the future. Each topography was conceptualized as a single compartment, and distributed surface contamination over the geometrical domain was abstracted into 0D. As a result, the existing biosphere model had limitations, such as a lack of quantitative descriptions of various transport and exposure pathways, and an inability to consider the evolution of the surface environment over time. These limitations hinder the accurate evaluation of radiological dose in the safety assessment. To overcome these limitations, recent developments in biosphere modeling have incorporated the nuclide transport process over a 2D or 3D domain, integrating the time-dependent evolution of the surface environment. In this study, we reviewed the methodology for biosphere modeling to assess the radiological dose given by distributed surface contamination over a 2D domain. Based on this review, we discussed the model requirements for a numerical module for biosphere dose assessment that will be implemented in the APro platform, a performance assessment tool being developed by the KAERI. Finally, we proposed a conceptual model for the numerical module of dose assessment.
The deep geologic repository (DGR) concept is widely accepted as the most feasible option for the final disposal of spent nuclear fuels. In this concept, a series of engineered and natural barrier systems are combined to safely store spent nuclear fuel and to isolate it from the biosphere for a practically indefinite period of time. Due to the extremely long lifetime of the DGR, the performance of the DGR replies especially on the natural geologic barriers. Assessing the safety of the DGR is thus required to evaluate the impacts of a wide range of geological, hydrogeological, and physicochemical processes including rare geological events as well as present water cycles and deep groundwater flow systems. Due to the time scale and the complexity of the physicochemical processes and geologic media involved, the numerical models used for safety evaluation need to be comprehensive, robust, and efficient. This study describes the development of an accessible, transparent, and extensible integrated hydrologic models (IHM) which can be approved with confidence by the regulators as well as scientific community and thus suitable for current and future safety assessment of the DGR systems. The IHM under development can currently simulate overland flow, groundwater flow, near surface evapotranspiration in a modular manner. The IHM can also be considered as a framework as it can easily accommodate additional processes and requirements for the future as it is necessary. The IHM is capable of handling the atmospheric, land surface, and subsurface processes for simultaneously analyzing the regional groundwater driving force and deep subsurface flow, and repository scale safety features, providing an ultimate basis for seamless safety assessment in the DGR program. The applicability of the IHM to the DGR safety assessment is demonstrated using illustrative examples.
지구 대기에 영향을 주는 거의 모든 인간활동과 자연현상을 수치적으로 담아내는 지구시스템모델은 기후 위기 의 시대에 활용될 가장 진보한 과학적 도구이다. 특히 우리나라 기상청이 도입한 지구시스템모델인 Unified Model (UM)은 지구 대기 연구의 과학적 도구로써 매우 활용성이 높다. 하지만 UM은 수치 적분과 자료 저장에 방대한 자원 이 필요하여 개별 연구자들은 최근까지도 기상청 슈퍼컴퓨터에만 UM을 가동하는 상황이다. 외부와 차단된 기상청 슈 퍼컴퓨터만을 이용하여 모델 연구를 수행하는 것은 UM을 이용한 모형 개선과 수치 실험의 원활한 수행에 있어 효율성이 떨어진다. 본 연구는 이러한 한계점을 극복할 수 있도록 개별 연구자가 보유한 고성능 병렬 컴퓨터(리눅스 클러스터) 에서 최신 버전 UM을 원활하게 설치하여 활용할 수 있도록 UM 시스템 환경 구축 과정과 UM 모델 설치 과정을 구 체적으로 제시하였다. 또한 UM이 성공적으로 설치된 리눅스 클러스터 상에서 N96L85과 N48L70의 두 가지 모형 해 상도에 대하여 UM 가동 성능을 평가하였다. 256코어를 사용하였을 때, 수평으로 1.875o ×1.25o(위도×경도)와 수직으로 약 85 km까지 85층 해상도를 가진 N96L85 해상도에 대한 UM의 AMIP과 CMIP 타입 한 달 적분 실험은 각각 169분 과 205분이 소요되었다. 저해상도인 3.75o ×2.5o와 70층 N48L70 해상도에 대해 AMIP 한달 적분은 252코어를 사용하여 33분이 소요되는 적분 성능을 보였다. 또한 적분을 위해 사용된 코어의 개수에 비례하여 적분 성능이 향상되었다. 성능 평가 외에 29년 간의 장기 적분을 수행하여 과거 지상 2-m 온도와 강수 강도를 ERA5 재분석자료와 비교하였고, 해상 도에 따른 차이도 정성적으로 살펴보았다. 재분석자료와 비교할 때, 공간 분포가 유사하였고, 해상도와 대기-해양 접합 에 따라 모의 결과에서 차이가 나타났다. 본 연구를 통해 슈퍼컴퓨터가 아닌 개별 연구자의 고성능 리눅스 클러스터 상에서도 UM이 성공적으로 구동됨을 확인하였다.