검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 175

        1.
        2024.10 구독 인증기관 무료, 개인회원 유료
        리튬이온전지는 친환경적이고 우수한 전지 성능덕분에 배터리 산업의 핵심으로 자리 잡았으며, 이에 따라 수요가 급증하고 있다. 그러나, 리튬이온전지의 수요증가는 리튬과 광물자원들의 공급문제를 초래하며, 수명이 다한 폐 리튬이온전지의 폐기방안이 아직 마련되지 않아 환경적 문제를 발생시킨다. 이러한 문제를 해결하기 위해 폐 리튬이온전지를 재활용하는 연구가 진행되고 있으며, 그 중에서도 폐 리튬이온전지에서 폐 양극 소재를 추출하여 재활용하는 다이렉트 리사이클링 연구가 주목받고 있다. 그러나, 폐 양극 소재는 오랜 충/방전으로 인해 구조적 붕괴(열화)가 발생한 상태로, 새로운 리튬이온전지에 적용을 위해서는 리튬이온전지 사용 전의 구조 즉, 층상구조로의 회복이 필요하다. 본 연구에서는 이를 위해 폐 양극 소재(LiNi0.6C0.2Mn0.2O2)가 열역학적으로 층상구조를 형성하는 온도를 분석하기 위해 700 ºC, 800 ºC, 900 ºC 범위에서 XRD를 통해 구조분석을 진행하였다. 폐 양극 소재는 700 ºC와 900 ºC 대비 800 ºC 열처리 시 1.44로 가장 높은 I003/I104 value를 보였다. 또한 800 ºC 열처리 시 0.1 C 기준 비 용량이 171.3 mAh/g으로 가장 높은 것을 확인하였다. 이를 통해 우리는 열역학적으로 층상구조를 형성하는 온도를 800 ºC로 도출하였으며 폐 양극 소재의 구조를 성공적으로 복원하였다.
        4,000원
        2.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As the demand for electric vehicles increases, the stability of batteries has become one of the most significant issues. The battery housing, which protects the battery from external stimuli such as vibration, shock, and heat, is the crucial element in resolving safety problems. Conventional metal battery housings are being converted into polymer composites due to their lightweight and improved corrosion resistance to moisture. The transition to polymer composites requires high mechanical strength, electrical insulation, and thermal stability. In this paper, we proposes a high-strength nanocomposite made by infiltrating epoxy into a 3D aligned h-BN structure. The developed 3D aligned h-BN/epoxy composite not only exhibits a high compressive strength (108 MPa) but also demonstrates excellent electrical insulation and thermal stability, with a stable electrical resistivity at 200 °C and a low thermal expansion coefficient (11.46×ppm/°C), respectively.
        4,000원
        3.
        2024.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, we report significant improvements in lithium-ion battery anodes cost and performance, by fabricating nano porous silicon (Si) particles from Si wafer sludge using the metal-assisted chemical etching (MACE) process. To solve the problem of volume expansion of Si during alloying/de-alloying with lithium ions, a layer was formed through nitric acid treatment, and Ag particles were removed at the same time. This layer acts as a core-shell structure that suppresses Si volume expansion. Additionally, the specific surface area of Si increased by controlling the etching time, which corresponds to the volume expansion of Si, showing a synergistic effect with the core-shell. This development not only contributes to the development of high-capacity anode materials, but also highlights the possibility of reducing manufacturing costs by utilizing waste Si wafer sludge. In addition, this method enhances the capacity retention rate of lithium-ion batteries by up to 38 %, marking a significant step forward in performance improvements.
        4,000원
        4.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Because plastics are cheap and light, their use is indispensable in our daily lives. However, the extensive use of plastics causes the disposal issue. Among various disposal processes, plastic recycling is of great attention because of minimizing waste and harmful byproducts. Herein, we recycle the most popular thermoplastic materials, high-density and low-density polyethylene, producing the anode materials for the Li-ion batteries. The electrochemical properties of the as-recycled soft carbon are investigated to study the energy storage capability as the anode of Li-ion batteries. Our work demonstrates the soft carbon recycled from plastic wastes is a promising anode material.
        4,000원
        5.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The raw material selected for this research was Brazil chestnut shells (BCs), which were utilized to gain porous carbon as a positive electrode for lithium–sulfur batteries (LSBs). The effects of N/S co-doped on the electrochemical properties of porous carbon materials were studied using thiourea as nitrogen and sulfur sources. The experimental results indicate that the N/S co-doped carbon materials have a higher mesopore ratio than the undoped porous carbon materials. The porous carbon material NSPC-2 has a lotus-like structure with uniform pore distribution. The N and S doping contents are 2.5% and 5.4%. The prepared N/S co-doped porous carbon materials were combined with S, respectively, and three kinds of sulfur carbon composites were obtained. Among them, the composite NSPC-2/S can achieve the initial specific discharge capacity of 1018.6 mAh g− 1 at 0.2 C rate. At 1 C rate, the initial discharge capacity of the material is 730.6 mAh g− 1, and the coulomb efficiency is 98.6% and the capacity retention rate is 71.5% after 400 charge–discharge cycles.
        4,600원
        6.
        2024.06 구독 인증기관 무료, 개인회원 유료
        Electric-propulsion systems for ships, also known as electric propulsion devices, represent the current direction of development for maritime power. Issues concerning the environment and fuel economy have compelled the maritime transport sector to seek solutions that reduce emissions and improve fuel efficiency. In this process, power electronics technology plays a significant role in the propulsion systems of ships. Selecting an efficient battery system is of great importance for enhancing the cruising range of yachts and minimizing environmental impact. The battery model is crucial for revealing the working principles of batteries, and it is extremely critical for the application and development of battery technology. The Battery Management System (BMS) serves a crucial regulatory function, optimizing both the safety and performance of battery cells. Central to its operation is the precise estimation of the battery's State of Charge (SOC), a process dependent on an exacting battery model. This system not only enhances longevity and reliability but also ensures that energy storage solutions meet high standards of efficacy. This study focused on testing the impedance characteristics of lithium-sulfur batteries (LSB) at various SOC points and establishing first- and second-order RC equivalent circuit models. The model parameters were identified through experimental data. Subsequently, a simulation platform was constructed using MATLAB/Simulink to simulate the behavior of LSB under a constant current discharge condition. The simulation results showed that the second-order RC model had significantly lower errors than the first-order model, demonstrating higher accuracy. These achievements can provide technical support for the research of energy storage systems in the green aviation and maritime industries.
        4,800원
        7.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        환경오염을 제어하기 위한 청정에너지에 대한 수요 증가는 빠르게 증가하고 있습니다. 리튬 이온 배터리와 같은 충전식 배터리는 청정에너지의 우수한 원천이지만 높은 수요와 공급 불일치로 인해 리튬 금속이 빠르게 고갈되고 있습니다. 배터리 폐기물에서 귀금속을 회수하는 것은 환경오염 제어와 함께 가능한 해결책 중 하나입니다. 멤브레인 기반 분리 방법은 폐기물에서 리튬을 회수할 수 있는 매우 성공적인 상업적 공정입니다. 이 작업은 최근에 보고된 다양한 방법을 다룰 것이며 검토 형식으로 작성될 것입니다.
        4,000원
        11.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The lithium-ion battery has been utilized in various fields including energy storage system, portable electronic devices and electric vehicles due to their high energy and power densities, low self-discharge, and long cycle-life performances. However, despite of various research on electrode materials, there is a lack of research on developing of binder to replace conventional polymer-based binding materials. In this work, petroleum pitch (MP-50)/polymer (polyurethane, PU) composite binder for lithium-ion battery has fabricated not only to use as a binding material, but also to re-place conventional polymer-based binder. The MP-50/PU composite binder has also prepared to various ratios between petroleum pitch and polymer to optimize the physical and electro-chemical performance of the lithium-ion battery based on the MP-50/PU composite binder. The physical and electrochemical performances of the MP-50/PU composite binder-based lithium-ion battery were evaluated using a universal testing machine (UTM), charge/discharge test. As a result, lithium-ion battery based on the MP-50/PU composite (5:5, mass ratio) binder showed optimized performances with 1.53 gf mm− 1 of adhesion strength, 341 mAh g− 1 of specific discharge capacity and 99.5% of ICE value.
        4,000원
        12.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In response to the growing demand for high-performance lithium-ion batteries, this study investigates the crucial role of different carbon sources in enhancing the electrochemical performance of lithium iron phosphate ( LiFePO4) cathode materials. Lithium iron phosphate ( LiFePO4) suffers from drawbacks, such as low electronic conductivity and low lithium-ion diffusion coefficient, which hinder its industrial development. Carbon is a common surface coating material for LiFePO4, and the source, coating method, coating amount, and incorporation method of carbon have a significant impact on the performance of LiFePO4 materials. In this work, iron phosphate was used as the iron and phosphorus source, and lithium carbonate was used as the lithium source. Glucose, phenolic resin, ascorbic acid, and starch were employed as carbon sources. Ethanol was utilized as a dispersing agent, and ball milling was employed to obtain the LiFePO4 precursor. Carbon-coated LiFePO4 cathode materials were synthesized using the carbothermal reduction method, and the effects of different carbon sources on the structure and electrochemical performance of LiFePO4 materials were systematically investigated. The results showed that, compared to other carbon sources, LiFePO4 prepared with glucose as the carbon source not only had a higher discharge specific capacity but also better rate cycle performance. Within a voltage range of 2.5–4.2 V, the initial discharge specific capacities at 0.1, 0.5, and 1 C rates were 154.6, 145.6, and 137.6 mAh/g, respectively. After 20 cycles at a 1 C rate, the capacity retention rate was 98.7%, demonstrating excellent electrochemical performance.
        4,000원
        13.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As the demand for lithium-ion batteries for electric vehicles is increasing, it is important to recover valuable metals from waste lithium-ion batteries. In this study, the effects of gas flow rate and hydrogen partial pressure on hydrogen reduction of NCM-based lithium-ion battery cathode materials were investigated. As the gas flow rate and hydrogen partial pressure increased, the weight loss rate increased significantly from the beginning of the reaction due to the reduction of NiO and CoO by hydrogen. At 700 °C and hydrogen partial pressure above 0.5 atm, Ni and Li2O were produced by hydrogen reduction. From the reduction product and Li recovery rate, the hydrogen reduction of NCM-based cathode materials was significantly affected by hydrogen partial pressure. The Li compounds recovered from the solution after water leaching of the reduction products were LiOH, LiOH·H2O, and Li2CO3, with about 0.02 wt% Al as an impurity.
        4,000원
        14.
        2024.03 구독 인증기관 무료, 개인회원 유료
        최근 전기차 및 전력저장 시스템과 같은 대형 전지 시장의 성장으로 인해 리튬 이온 배터리에 대한 수요가 급증하 고 있다. 이에 따라 폐전지의 발생이 빠르게 증가할 것 으로 예상되며, 이에 대한 처리가 사회적 문제가 될 것 으로 예상된다. 폐전지 처리의 가장 효과적인 방법은 폐전지의 소재를 재활용하는 방법이다. 이 중 고가의 금속 물질로서, 재활용 시 경제성이 가장 높은 양극 소재 재활용 연구가 가장 활발히 이뤄지고 있다. 하지만 폐전지로부터 회수된 블 랙 파우더에는 도전재 및 바인더가 포함되어 있는데 양극 소재를 재활용하기 위해서는 이를 제거하는 공정이 필요하 다. 본 연구에서는 폐전지에서 추출된 폐양극 소재의 재활용을 위한 소재 전처리 연구를 제시한다. 열처리 및 화학 처리의 두 가지 전처리 공정을 사용하여 불순물을 제거하였고, 이에 따른 제거 정도를 SEM 분석을 통해 확인하였고, 불순물의 정량 분석을 TGA, EA 분석을 통해 확인하였으며, 전기화학 성능을 분석하였다.
        4,000원
        15.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Efficient Li-ion transport in anode materials is paramount for electric vehicles (EVs) and energy storage systems. The rapid charging demands of EVs can lead capacity decay at high charging rate. To overcome this challenge, we focus on graphite geometric characteristics that effect to interparticle space. We interpret the correlation between the utilization of the electrode and the interparticle space where solvated Li-ion transports in liquid electrolyte. To introduce variability into this space, two main coke precursors, coal cokes and petroleum cokes, were prepared and further categorized as normal cokes and needle cokes. Manufactured graphite samples were observed with distinct geometric characteristics. In this study, investigates the impact of these geometric variations on electrochemical performance, emphasizing rate capability and cycle stability during fast charging. By analyzing the transport properties of electrochemical species within these graphite samples, we reveal the critical role of morphology in mitigating concentration polarization and side reaction, such as Li-plating. These findings offer promising contribution for the development of advanced anode materials, in fast-charging condition in Li-ion.
        4,000원
        16.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The waste secondary battery contains a significant amount of valuable metals, making its recycling highly desirable. However, conventional chemical methods for recycling are environmentally unfriendly and cost-ineffective. Rather than the chemical method, this paper deals with a mechanical method for recovering electrode materials from waste secondary batteries by blowing pressurized air onto the interface area between the electrode and the separator. Especially, in this study, the effective blowing angle were searched by simulating the separation of the electrode material from the separator through 1-way fluid structure interaction analysis based on the Cohesive Zone Modeling technique.
        4,000원
        17.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 전기차 시장의 확장으로 배터리 산업이 급격히 성장함에 따라 폐배터리 리사이클링 기술 개발의 필요성이 증가하고 있다. 폐배터리 리사이클링 기술은 배터리 산업에 핵심적인 리튬, 코발트, 니켈 등 희소금속의 공급을 안정화하고 환경 및 인간의 건강에 미치는 영향을 경감할 수 있다. 본 총설에서는 금속 회수 기술의 배경이 되는 이론적 원리와 현재 상 용되고 있는 금속 회수 공정을 소개하고자 한다. 또한, 기존 공정의 문제점을 개선하려는 연구 및 기술 개발 동향을 서술하여 리사이클링 기술이 나아가야 할 방향을 소개하고자 한다.
        4,000원
        18.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The complexation of silicon with carbon materials is considered an effective method for using silicon as an anode material for lithium-ion batteries. In the present study, carbon frameworks with a 3D porous structure were fabricated using metal–organic frameworks (MOFs), which have been drawing significant attention as a promising material in a wide range of applications. Subsequently, the fabricated carbon frameworks were subjected to CVD to obtain silicon-carbon complexes. These siliconcarbon complexes with a 3D porous structure exhibited excellent rate capability because they provided sufficient paths for Li-ion diffusion while facilitating contact with the electrolyte. In addition, unoccupied space within the silicon complex, combined with the stable structure of the carbon framework, allowed the volume expansion of silicon and the resultant stress to be more effectively accommodated, thereby reducing electrode expansion. The major findings of the present study demonstrate the applicability of MOF-based carbon frameworks as a material for silicon complex anodes.
        4,500원
        19.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A carbon matrix for high-capacity Li/Na/K-alloy-based anode materials is required because it can effectively accommodate the variation in the volume of Li/Na/K-alloy-based anode materials during cycling. Herein, a nanostructured porous polyhedral carbon (PPC) was synthesized via a simple two-step method consisting of carbonization and selective acid etching, and their electrochemical Li/Na/K-ion storage performance was investigated. The highly uniform PPC, with an average particle size of 800 nm, possesses a porous structure and large specific surface area of 258.82 cm2 g– 1. As anodes for Li/Na/K-ion batteries (LIBs/NIBs/KIBs), the PPC matrix exhibited large initial reversible capacity, fast rate capability (LIB: ~ 320 mAh g– 1 at 3C; NIB: ~ 140 mAh g– 1 at 2C; KIB: ~ 110 mAh g– 1 at 2C), better cyclic performance (LIB: ~ 550 mAh g– 1; NIB: ~ 210 mAh g– 1; KIB: ~ 190 mAh g– 1 at 0.2C over 100 cycles), high ionic diffusivity, and excellent structural robustness upon cycling, which demonstrates that the PPC matrix can be highly used as a carbon matrix for high-capacity alloy-based anode materials for LIBs/NIBs/KIBs.
        4,000원
        20.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The lithium ion battery has applied to various fields of energy storage systems such as electric vehicle and potable electronic devices in terms of high energy density and long-life cycle. Despite of various research on the electrode and electrolyte materials, there is a lack of research for investigating of the binding materials to replace polymer based binder. In this study, we have investigated petroleum pitch/polymer composite with various ratios between petroleum pitch and polymer in order to optimize the electrochemical and physical performance of the lithium-ion battery based on petroleum pitch/polymer composite binder. The electrochemical and physical performances of the petroleum pitch/polymer composite binder based lithium-ion battery were evaluated by using a charge/discharge test, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and universal testing machine (UTM). As a result, the petroleum pitch(MP-50)/polymer(PVDF) composite (5:5 wt % ratio) binder based lithium-ion battery showed 1.29 gf mm-1 of adhesion strength with 144 mAh g-1 of specific dis-charge capacity and 93.1 % of initial coulombic efficiency(ICE) value.
        4,000원
        1 2 3 4 5