Embryos produced with serum show the alterations in their ultrastructure, impaired compaction, abnormal blastulation, aberrant mRNA expression profiles and large calf syndrome with greater incidences of stillbirths and deaths after birth. The aim of the present study was to describe in vitro embryo production by analyzing embryo production, fetal production and pregnancy rate in free-serum medium. The OPU-IVP data used in this study from 2016. Approximately, sixteen cows (Hanwoo), which belonged to the Institute of Gyeongsang National University, were used. Two experimental group is used in this study. Serum groups were conducted in March to July and free-serum group was conducted in September to December. The recovered cumulus-oocyte complexes were morphologically classified to four grades based on the compaction of cumulus cells layers and homogeneity of the cytoplasm. The number of oocyte was significantly greater in serum groups than that in free-serum groups (29.61 ± 0.63 vs. 15.6 ± 0.62; p < 0.05). Between serum and free-serum groups indicate that average of 1st and 2nd grade oocytes were no difference (2.38 ± 1.67 vs. 2.38 ± 1.48; p > 0.05), but number of 3rd and 4th grade oocytes were greater in serum groups than that in free-serum groups (7.31 ± 7.64 vs. 5.60 ± 6.29; p < 0.05). Embryo cleaved competence was higher in rate in free-serum groups than that in serum groups (62.1% vs. 58.3; p < 0.05). However, blastocyst developmental rate was no difference between serum and free-serum groups (33.1% vs. 43.5%; p < 0.05). 986 recipients were used for embryo transfer. Pregnancy rate was indicated that between serum and free-serum group was no difference (54.6% vs. 56.3%; p < 0.05). In conclusion, we developed the free-serum system for production of in vitro bovine embryos in order to meet the developmental and qualitative requirements for large scale commercial use.
This study investigated the effect of Charcoal:Dextran Stripped fetal bovine serum (CDS FBS) and heat-inactivated FBS (HI FBS) in embryo culture medium on their ability to support in vitro development of bovine embryos. The developmental ability and quality of bovine embryos were determined by assessing their cell number, lipid content, mitochondrial activity, gene expression, and cryo-tolerance. The percentages of embryos that underwent cleavage and formed a blastocyst were significantly (P<0.05) higher in medium containing CDS FBS than in medium containing HI FBS (42.84 ± 0.78% vs. 36.85 ± 0.89%, respectively). Furthermore, the beneficial effects of CDS FBS on embryos were associated with a significantly reduced intracellular lipid content, as identified by Nile red staining, which increased their cryo-tolerance. The post-thaw survival rate of blastocysts was significantly (P<0.05) higher in the CDS FBS than in the HI FBS group (85.33 ± 4.84% vs. 68.67 ± 1.20%). Quantitative real-time PCR showed that the mRNA levels of acyl-CoA synthetase long-chain family member 3, acyl-coenzyme A dehydrogenase long-chain, hydroxymethylglutaryl-CoA reductase, and insulin-like growth factor 2 receptor were significantly increased upon culture with CDS FBS. Moreover, the mRNA levels of sirtuin 1, superoxide dismutase 2, and anti-apoptotic associated gene B-cell lymphoma 2 in frozen-thawed blastocysts were significantly (P<0.05) higher in the CDS FBS group than in the HI FBS group, however, the mRNA level of the pro-apoptotic gene BCL2-associated X protein was significantly reduced. Taken together, these data suggest that supplementation of medium with CDS FBS improves in vitro bovine embryo developmental competence and cryo-tolerance.
This study was conducted to evaluate effect of α-linolenic acid (ALA) and bovine serum albumin (BSA) on viability, acrosome reaction and mitochondrial intact in frozen-thawed boar sperm. The boar semen was collected by gloved-hand method and cryopreserved using freezing extender containing 3 ng/mL ALA and/or 20 μg/mL BSA. Cryopreserved boar sperms were thawed in 37°C water-bath for 45 sec to analysis. Viability, acrosome reaction, and mitochondrial intact were analyzed using flow cytometry. In results, viability of frozen-thawed boar sperm was significantly higher in only ALA+BSA supplement group than control group (p<0.05), whereas there was no difference either in ALA or BSA supplement. However, acrosome reacted sperm in both of live and all sperm population were significantly decreased in all treatment groups than control (p<0.05). Interestingly, mitochondrial intact of boar sperm was enhanced in ALA and ALA+BSA groups compared with control (p<0.05). In this study, we showed that supplementation of ALA and BSA in freezing extender enhanced the sperm viability, mitochondrial intact and decrease acrosomal membrane damage. In conclusion, our findings suggest that quality of frozen-thawed sperm in mammalians could improve by using of ALA and BSA.
Early pregnancy results in th production of various signal molecules such as steroids, prostaglandins, and many protein factors. The proteins especially produced by the placenta have been used to detect pregnancy for many years in other species. More recently, pregnancy-specific protein B, which is a placental glycoprotein can be measured by RIA or proteomic methods in serum of pregnant cow. And 2D Fluorescence difference gel electrophoresis (DIGE) is an emerging technique for comparative proteomics, which improves the reproducibility and reliability of differential protein expression analysis between samples. For this reason, we are analyzed serum of bovine. The purpose of this study was to apply DIGE technique for identification of bovine pregnancy-specific proteins using bovine pregnant and non-pregnant serum samples. Serums of 2 pregnant Holstein dairy cattle at day 21 after AI and those of 2 non-pregnant were used in this study. The molecular weight and charge matched cyanine dyes enable pre-electrophoretic labeling of non-pregnancy and pregnant serum proteins which are then mixed and labeled with Cy2 were used as an internal standard. Two pools of proteins are labeled with Cy3 and Cy5 fluorescent dyes, respectively. Labeled proteins with Cy2, Cy3 and Cy5 mixed together and separated in same gel and then were detected by fluorescence image analyzer. The 2D DIGE analysis using fluorescence CyDye flour showed higher sensitivity and better reproducible results than conventional 2D gel electrophoresis. Approximately 1,500 protein spots were detected by 2D DIGE. The differentially expressed proteins were identified by MALDI-TOF Mass spectrometer. Total 16 protein spots differentially expressed in the pregnant serum were detected, among which 7 spots were up-regulated proteins identified as conglutinin precursor, modified bovine fibrinogen, IgG1 etc, and 6 spots were down-regulated proteins identified as hemoglobin, complement component 3, bovine fibrinogen, IgG2a etc. These results indicated that DIGE system could be advantageous for the analysis of serum proteomics diversified by physiological conditions.
Nanoparticles are widely used in various fields such as electronics, medicines and getting focus on the application in food industry for developing intelligent delivery system with bioactive ingredients or functional nutrients. Basic study on possible toxicological effect of food applicable nanoparticles is required for a practical application in food industry. In this study, size-controlled bovine serum albumin (BSA) nanoparticles were prepared by a desolvation method and their cytotoxicity was investigated. BSA nanoparticles were prepared with mean diameters as 115, 137, 159, and 299 nm, then cytotoxicity was evaluated with RAW 264.7 macrophages as in vitro model. Cell viabilities were significantly affected as increasing nanoparticle concentration. Smaller the sizes of nanoparticles, LD50 values were significantly reduced. LD50 values of BSA nanoparticles were 50, 65, 126, and 170 μg/ml, respectively. Nanoparticle was supposed to induce the apoptosis of RAW 264.7 marcrophages and underlying mechanism will be investigated in future. These findings will be used as valuable basement for nanofood development with BSA nanoparticles.
This study was designed to evaluate the effect of bovine serum albumin (BSA) in a maturation medium on oocyte maturation and embryonic development in pigs. Immature pig oocytes were matured for 44 h in a medium supplemented with 0.4% (w/v) BSA, 0.1% (w/v) polyvinyl alcohol (PVA), or 10% (v/v) pig follicular fluid (PFF). After IVM, oocytes reached metaphase II stage were activated for parthenogenesis (PA) or used as cytoplasts for somatic cell nuclear transfer (SCNT). Nuclear maturation (89.5%, 90.7% and 91.3% for BSA, PVA and PFF, respectively) and intraoocyte glutathione contents (1.20, 1.16 and 1.00 pixels/oocyte for BSA, PVA and PFF, respectively) were not altered by the macromolecules added to maturation medium. IVM of oocytes in a medium containing BSA (21.4%) and PVA (20.7%) showed significantly lower blastocyst formation after PA than culture in medium with PFF (39.2%). After SCNT, oocytes matured in medium with BSA showed decreased embryonic development to the blastocyst stage (9.2%) compared to those matured in medium with PFF (28.9%), while 23.6% of SCNT oocytes matured in medium with PVA developed to the blastocyst stage. When the effect of BSA in a maturation medium during the first 22 h and the second 22 h of IVM in combination with PFF or PVA was examined, PVA-BSA showed a higher nuclear maturation (94.1%) than BSA-PFF (84.5%). However, there was no significant difference in the blastocyst formation among tested combinations (47.3, 52.2, 50.0, 44.4 and 49.0% for PFF-PFF, PFF-BSA, PVA-BSA, BSA-PVA and BSA-PFF, respectively). Our results demonstrate that BSA and PVA added to maturation medium can support oocyte maturation comparable to PFF-supplemented medium. However, maturation of oocytes in a BSA-containing medium decreases embryonic development after PA and SCNT when compared with the medium supplemented with PFF.
The aim of the present study was to compare two different serum-free media, modified synthetic oviduct fluid (mSOF) and modified potassium simplex optimization medium (mKSOM) containing 20% RD (RPMI1640 + DMEM, 1:1 v/v) (RD-mKSOM), for in vitro culture (IVC) of bovine embryos. After in vitro maturation and fertilization, the presumptive zygotes were cultured in two different serum-free conditions for 7 days and 9 days to evaluate blastocyst formation and hatching, respectively. Serum supplemented conventional CR2 medium was used as control. After 7 day of culture, there was no significant difference in cleavage and blastocyst formation rates among three groups (mSOF, 59.3 and 30.1%; RD-mKSOM, 65.0 and 41.5%; control, 51.6 and 38.0%, respectively). Hatching rate was significantly higher in control (69.0%) than other experimental groups (mSOF, 22.0%; RD-mKSOM, 39.5%) (P<0.0001 and P<0.001, respectively). Although both serum-free conditions showed lower hatching rates than serum-added control, in serum-free groups, RD-mKSOM showed significantly higher hatching rate than mSOF (P<0.001). In addition, one-step using RD-mKSOM may facilitate IVC procedure than two-step culture system. In conclusion, the results indicate that one-step RD-mKSOM is more suitable defined culture system for IVC of bovine embryos than two-step mSOF.
To determine the optimal concentration of fetal bovine serum (FBS) on the growth of insect cells and the multiplicity of viruses, the growth of cells (Sf21 and Bm5) and viruses were examined on the various concentrations of FBS. In view of the viability, growth speed, proliferation of cells and the amount of FBS, the most proper concentration for the cell culture were 7% and 5% for Sf21 and Bm5, respectively. The multiplicity of viruses at the various concentrations of FBS was similar in both cell lines at 5 days post-infection (p.i.). However, it differed significantly at 2 and 3 days p.i. The proper concentration of FBS were 10% and 3% for Sf21 at 2 and 3 days p.i., respectively, and 5% for Bm5 at both 2 and 3 days p. i. These results suggested that the optimal concentration of FBS should be determined according to the used cell lines and viruses for their optimum production.
본 연구는 한우 난소의 난포 발달에 있어서 bFF 또는 anti-inhibin serum(AI)의 생리적 역할을 검토하기 위해 수행하였다. Saline(0.95%, control), bFF 또는 AI를 경정맥 주사 처리한 9마리의 한우 암소에서 채혈하여 혈중 estradiol-17(E2), inhibin 및 progesterone(P4) 농도를 분석하였으며, 이들 처리에 의한 난포의 발달은 초음파 진단기를 이용하여 관찰하였다. 본 연구에서 얻어진 결과는
방사선 그라프트 중합법을 적용하여, 폴리에틸렌 다공성 중공사막에 전자선을 조사시킨 후, glycidyl methacrylate(GMA)를 그라프트 중합하였다. 그 후, 음이온 교환기로서 diethylamine (DEA), triethylamine (TEA)를 도입시켜 2종류의 음이온 교환막을 합성하였다. DEA막과 TEA막의 이온교환 밀도는 3.4 mmol/g, 1.74 mmol/g으로 DEA막이 TEA막보다 높은 이온교환기를 얻을 수 있었다. 이 2종류의 음이온교환막에 단백질(bovine serum albumin, BSA)을 투과법에 의해 고정시켜 BSA 고정막을 만들었다. DEA-BSA막의 경우, 그라프트 체인에 BSA가 8층 이상으로 다층 흡착하였으나, TEA-BSA막의 경우, 강한 음이온에 의해 다층 흡착이 이루어지지 않았다. DEA-BSA막의 경우, BSA 다층 흡착성 고정을 나타내기 때문에 L-Trp가 D-Trp보다 더 강한 흡착 특성을 나타내었다. L, D-Trp 이성질체 혼합물을 투과시킨 BTC에 있어서, DEA-BSA 막의 경우, BSA에 대한 L-Trp와 D-Trp의 키랄 인식이 다르기 때문에 2단계의 BTC곡선을 얻을 수 있었다.
난자의 체외성숙 및 체외배양에는 일반적으로 동물의 혈청을 사용하고 있다. 그러나, 채취한 소의 상태에 따라서 혈청의 질에 차이가 있어 실험데이터가 일정하지 않을 수 있고, 그것으로부터 바이러스, 세균, 마이코플라즈마 등에 오염될 가능성이 있다. 따라서, 본 실험에서는 완전 무 혈청 배양액에서 난자의 성숙, 배 발생율, 세포 수, 동결성을 검토하였다. 다음으로, 근래 혈청배지로 생산한 체외 배양 수정란은 과체중의 산자 생산, 초기 산자 사망률, caesa
The purpose of this study was to investigate the development of bovine nuclear transfer (NT) embryos cultured in serum-free conditions. Bovine NT embryos cultured in various culture conditions were compared blastocyst development, total cell number and apoptosis using TUNEL assay. In experiment 1, blastocyst rates of NT embryos were significantly higher (P<0.01) in FBS (22.0%) and BSA (26.6%) groups than in PVA (6.3%) group. Total cell number was significantly higher in FBS (78.4±19.4) and BSA (90.9±29.1) groups than in PVA group (46.0±0.0). Apoptotic cell number was significantly fewer in FBS (3.1±1.4) and BSA (1.7±1.4) groups than in PVA group (7.0±20.0) However, all of results were not different between the FBS and BSA group. In experiment 2, blastocyst rates of NT embryos were significantly higher (P<0.05) in fatty acid free-BSA (FAF-BSA) group (26.8%) than in fraction V-BSA group (11.2%). Total cell number were somewhat higher in FAF-BSA group (89.8±30.7) than in fraction V-BSA group (88.1±19.3). Apoptotic cell number were somewhat fewer in FAF-BSA (1.7±1.5) group than in fraction V-BSA group (4.2±2.9). These findings suggest that serum free condition were effective for the in vitro development of bovine NT embryos. Therefore, we concluded that fatty acid free-BSA has beneficial effect in development bovine NT embryos and can be use as a serum substitute.
In vitro embryo culture techniques provide significant contributions not only for a basic research of fertilization and early embryogenesis, but also for a low cost mass production of bovine embryos for transfer, embryo diagnosis, nuclear cloning and the production of transgenic cows. This presentation introduces newly developed serum-free media (IVD101 and IVMD101) that are effective far high yields of transferable embryos of excellent quality from in vitro-matured and fertilized oocytes. Both serum-free media are superior to a conventional serum-containing medium on the increased rates of blastocyst formation, post-thaw embryo viability, and pregnancy after transfer. Furthermore, reduced risks of calf mortality and large calf syndrome are also observed for the serum-free-derived embryos. Serum-derived embryos contain a large number of lipid droplets and immature mitochondria in their cytoplasm that may account for the lower production of transferable embryos and poor embryo quality.