검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2013.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of carrier gases (He, ) on the properties of Ti coating layers were investigated to manufacture high-density Ti coating layers. Cold spray coating layers manufactured using He gas had denser and more homogenous structures than those using gas. The He gas coating layers showed porosity value of 0.02% and hardness value of Hv 229.1, indicating more excellent properties than the porosity and hardness of gas coating layers. Bond strengths were examined, and coating layers manufactured using He recorded a value of 74.3 MPa; those manufactured using gas had a value of 64.6 MPa. The aforementioned results were associated with the fact that, when coating layers were manufactured using He gas, the powder could be easily deposited because of its high particle impact velocity. When Ti coating layers were manufactured by the cold spray process, He carrier gas was more suitable than gas for manufacturing excellent coating layers.
        4,000원
        2.
        2012.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cold spray deposition using Titanium powder was carried out to investigate the effects of powder morphology and powder preheating on the coating properties such as porosity and hardness. The in-flight particle velocity of Ti powder in cold spray process was directly measured using the PIV (particle image velocimetry) equipment. Two types of powders (spherical and irregular ones) were used to manufacture cold sprayed coating layer. The results showed that the irregular morphology particle appeared higher in-flight particle velocity than that of the spherical one under the same process condition. The coating layer using irregular morphology powder represented lower porosity level and higher hardness. Two different preheating conditions (no preheating and preheating at ) were used in the process of cold spraying. The porosity decreased and the hardness increased by conducting preheating at . It was found that the coating properties using different preheating conditions were dependent not on the particle velocity but on the deformation temperature of particle. The deposition mechanism of particles in cold spray process was also discussed based on the experimental results of in flight-particle velocity.
        4,000원
        3.
        2012.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the effects of annealing environment for the densification and purification properties of pure titanium coating layer manufactured by cold spraying. The annealing was conducted at /1 h and three kinds of environments of vacuum, Ar gas, and mixture gas were controlled. Cold sprayed Ti coating layer (as sprayed) represented 6.7% of porosity and 228 HV of hardness, showing elongated particle shapes (severe plastic deformation) perpendicular to injection direction. Regardless of gas environments, all thermally heat treated coating layers consisted of pure -Ti and minimal oxide. Vacuum environment during heat treatment represented superior densification properties (3.8% porosity, 156.7 HV) to those of Ar gas (5.3%, 144.5 HV) and mixture gas (5.5%, 153.1 HV). From the results of phase analysis (XRD, EPMA, SEM, EDS), it was found that the vacuum environment during heat treatment could be effective for reducing oxide contents (purification) in the Ti coating layer. The characteristic of microstructural evolution with heat treatment was found to be different at three different gas environments. The controlling method for improving densification and purification in the cold sprayed Ti coating material was also discussed.
        4,000원
        4.
        2008.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Dynamic plastic deformation behavior of copper particles occurred during the cold spray processing was numerically analyzed using the finite element method. The study was to investigate the impact as well as the heat transfer phenomena, happened due to collision of the copper particle of in diameter with various initial velocities of into the copper matrix. Effective strain, temperature and their distribution were investigated for adiabatic strain and the accompanying adiabatic shear localization at the particle/substrate interface.
        4,000원
        6.
        2006.04 구독 인증기관·개인회원 무료
        Cold spraying is a fairly new coating technique, which within the last decade attracted serious attention of research groups and spray companies. As compared to thermal spraying, the low process temperatures in cold spraying result in unique coating properties, which promise new applications. Since particles impact with high kinetic energy in the solid state, new concepts to describe coating formation are requested to enable the full potential of this new technology. The present contribution gives a brief review of current models concerning bonding, supplying a description of the most influential spray parameters and consequences for new developments. With respect to spray forming by cold cold spraying, microstructures and thick, further machineable structures are presented.