검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 82

        1.
        2023.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        3Y-TZP (3 mol% yttria-stabilized tetragonal zirconia polycrystals) ceramics have excellent mechanical properties including high fracture toughness, good abrasion resistance as well as chemical and biological stability. As a result, they are widely used in mechanical and medical components such as bearings, grinding balls, and hip implants. In addition, they provide excellent light transmittance, biocompatibility, and can match tooth color when used as a dental implant. Recently, given the materials’ resemblance to human teeth, these ceramics have emerged as an alternative to titanium implants. Since the introduction of CAD/CAM in the manufacture of ceramic implants, they’ve been increasingly used for prosthetic restoration where aesthetics and strength are required. In this study, to improve the surface roughness of zirconia implants, we modified the 3YTZP surface with a biocomposite of hydroxyapatite and forsterite using room temperature spray coating methods, and investigated the mixed effect of the two powders on the evolution of surface microstructure, i.e., coating thickness and roughness, and biological interaction during the in vitro test in SBF solution. We compared improvement in bioactivity by observing dissolution and re-precipitation on the specimen surface. From the results of in vitro testing in SBF solution, we confirmed improvement in the bioactivity of the 3Y-TZP substrate after surface modification with a biocomposite of hydroxyapatite and forsterite. Surface dissolution of the coating layer and the precipitation of new hydroxyapatite particles was observed on the modified surface, indicating the improvement in bioactivity of the zirconia substrate.
        4,000원
        2.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        CNTs/Al-Li composite was first prepared by hot-pressed sintering from Al-Li alloy powder and CNTs solution, and then the hot compression tests were performed on MMS-100 thermal simulator at strain rate range of 0.01– 10 s− 1, deformation temperature range of 350–500 °C, and total deformation amount of 60%. True stress–strain curves were plotted, and constitutive equation as well as hot processing maps were successfully confirmed based on Arrhenius constitutive model and Prasad instability criterion. Results show that CNTs/Al-Li composite have a very poor hot deformation ability and narrow processing region, which is strain rate range of 0.1–1 s− 1 and deformation temperature range of 360–400 °C. Hot extrusion experiment was carried out and the processing parameters were selected according to the established hot processing map, and an improvement on strength and a good balance between strength and plasticity can be obtained, which is about 650 MPa for tensile strength and 9% for elongation.
        4,000원
        3.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The main objective of the research was to deposit thin films of silver on a graphite carbon paste in a phosphate buffer medium using an electrochemical method. To construct a nitrofurazone detection sensor that is highly sensitive. Different manufacturing parameters, such as electrodeposition potential, pH effect, potential scan rate effect, and number of scan cycles, were examined in this section. The parameters were optimized to improve the deposited silver layers various electrocatalytic characteristics. The Nitrofurazone reduction process is diffusion controlled, as seen by the linear variation of Epc with log(v). The constructed Ag-NPs@CPE electrod has excellent electrical characteristics a large active surface area and low background with extremely high electrical conductivity, according to structural and electrochemical characterizations such as Scanning electron microscopy, X-ray diffraction (XRD) and cyclic voltammetry. The constructed sensor has a very remarkable analytical performance for nitrofurazone molecule identification, with a very low detection limit of about 10– 8 M. The detection of nitrofurazone using our Ag-NPs@CPE sensors in real samples contaminated with the antibiotic nitrofurazone, such as tap water and urine. In the selected sample, the electroanalytical findings reveal a very satisfactory recovery rate of more than 94 percent.
        4,600원
        4.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        화석연료의 사용에 따른 지구 온난화 및 기상 이변으로 인하여 온실가스 저감 문제가 대두되고 있으며, 그에 따 라 에너지 소모 없이 셀프 쿨링이 가능한 소재에 대한 연구가 활발히 진행되고 있다. 그 중에서도 실크는 천연 쿨링 소재로 알려져 있으나, 기존의 혼합 공정에서는 실크를 화학적으로 분말화 시키기 때문에 복사 냉각 효과가 사라지는 문제점이 있어, 복사냉각을 위한 필름 또는 코팅제 형태로 제조하는데 어려움을 겪고 있다. 본 연구에서는 실크 피브로인의 고유구조를 훼손 하지 않는 물리적 분쇄 공정을 거친 실크 분말을 사용하여 다양한 형태의 막을 제조하고, 코팅제로서의 적용가능성을 살펴보 고자 연구를 수행하였다. 이를 위해 실크 피브로인 분말이 도입된 전기방사 복합막 및 평막 형태의 복합막을 제조하였으며, 용액의 점도가 막 제조 및 제조된 막의 물성에 큰 영향을 미치는 것을 관찰하였다.
        4,000원
        5.
        2020.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A powder-in-sheath rolling method is applied to the fabrication of a carbon nano tube (CNT) reinforced copper composite. A copper tube with outer diameter of 30 mm and wall thickness of 2 mm is used as sheath material. A mixture of pure copper powder and CNTs with a volume content of 3 % is filled in a tube by tap filling and then processed to an 93.3 % reduction using multi-pass rolling after heating for 0.5 h at 400 oC. The specimen is then sintered for 1h at 500 oC. The relative density of the 3 vol%CNT/Cu composite fabricated using powder in sheath rolling is 98 %, while that of the Cu powder compact is 99 %. The microstructure is somewhat heterogeneous in width direction in the composite, but is relatively homogeneous in the Cu powder compact. The hardness distribution is also ununiform in the width direction for the composite. The average hardness of the composites is higher by 8Hv than that of Cu powder compact. The tensile strength of the composite is 280 MPa, which is 20 MPa higher than that of the Cu powder compact. It is concluded that the powder in sheath rolling method is an effective process for fabrication of sound CNT reinforced Cu matrix composites.
        4,000원
        6.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, the electrical explosion of wire in liquid and subsequent spark plasma sintering (SPS) was introduced for the fabrication of Ni-graphite nanocomposites. The fabricated composite exhibited good enhancements in mechanical properties, such as yield strength and hardness, but reduced the ductility in comparison with that of nickel. The as-synthesized Ni-graphite (5 vol.% graphite) nanocomposite exhibited a compressive yield strength of 275 MPa (about 1.6 times of SPS-processed monolithic nickel ~170 MPa) and elongation to failure ~22%. The hardness of Nigraphite composite had a value of 135.46 HV, which is about 1.3 times higher than that of pure SPS-processed Ni (105.675 HV). In terms of processing, this work demonstrated that this processing route is a novel, simple, and low-cost method for the synthesis of nickel-graphite composites.
        4,200원
        8.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In aluminum brazing processes, corrosive flux, which is used in preventing oxidation, is currently raising environmental concerns because it generates many pollutants such as dioxin. The brazing process involving noncorrosive flux is known to encounter difficulties because the melting temperature of the flux is similar to that of the base material. In this study, a new brazing filler material is developed based on aluminum and non-corrosive flux composite powder. To minimize the interference of consolidation aluminum alloy powder by the flux, the flux is intentionally embedded in the aluminum alloy powder using a mechanical milling process. This study demonstrates that the morphology of the composite powder can be varied according to the mixing process, and this significantly affects the relative density and mechanical properties of the final filler samples.
        4,000원
        9.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        With the recent remarkable improvements in the average speeds of contemporary trains, a necessity has arisen for the development of new friction modifiers to improve adhesion characteristics at the wheel-rail interface. The friction modifier must be designed to reduce slippage or sliding of the trains’ wheels on the rails under conditions of rapid acceleration or braking without excessive rolling contact wear. In this study, a novel composite material consisting of metal, ceramic, and polymer is proposed as a friction modifier to improve adhesion between wheels and rails. A blend of Al-6Cu-0.5Mg metallic powder, Al2O3 ceramic powder, and Bakelite-based polymer in various weight-fractions is hot-pressed at 150oC to form a bulk composite material. Variation in the adhesion coefficient is evaluated using a high-speed wheel-rail friction tester, with and without application of the composite friction modifier, under both dry and wet conditions. The effect of varying the weighting fractions of metal and ceramic friction powders is detailed in the paper.
        4,000원
        10.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study focuses on the fabrication of a WC/Co composite powder from the oxide of WC/Co hardmetal scrap using solid carbon in a hydrogen gas atmosphere for the recycling of WC/Co hardmetal. Mixed powders are manufactured by mechanically milling the oxide powder of WC-13 wt% Co hardmetal scrap and carbon black with varying powder/ball weight ratios. The oxide powder of WC-13 wt% Co hardmetal scrap consists of WO3 and CoWO4. The mixed powder mechanically milled at a lower powder/ball weight ratio (high mechanical milling energy) has a more rapid carbothermal reduction reaction in the formation of WC and Co phases compared with that mechanically milled at a higher powder/ball weight ratio (lower mechanical milling energy). The WC/Co composite powder is fabricated at 900℃ for 6 h from the oxide of WC/Co hardmetal scrap using solid carbon in a hydrogen gas atmosphere. The fabricated WC/Co composite powder has a particle size of approximately 0.25-0.5 μm.
        4,000원
        11.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to expand the application of oxide dispersion-strengthened (ODS) steel, a composite material is manufactured by adding mechanically alloyed ODS steel powder to conventional steel and investigated in terms of microstructure and wear properties. For comparison, a commercial automobile part material is also tested. Initial microstructural observations confirm that the composite material with added ODS steel contains i) a pearlitic Fe matrix area and ii) an area with Cr-based carbides and ODS steel particles in the form of a Fe-Fe3C structure. In the commercial material, various hard Co-, Fe-Mo-, and Cr-based particles are present in a pearlitic Fe matrix. Wear testing using the VSR engine simulation wear test confirms that the seatface widths of the composite material with added ODS steel and the commercial material are increased by 24% and 47%, respectively, with wear depths of 0.05 mm and 0.1 mm, respectively. The ODS steel-added composite material shows better wear resistance. Post-wear-testing surface and cross-sectional observations show that particles in the commercial material easily fall off, while the ODS steel-added material has an even, smooth wear surface.
        4,000원
        12.
        2017.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Photoelectron-hole separation efficiency plays an important role in the enhancement of the photocatalytic activity of photocatalysts towards the degradation of organic molecules. In this study, TiO2/TiOF2 heterostructured composite powders with suitable band structures, which structures are able to separate photoelectron-hole pairs, have been synthesized using a simple and versatile ultrasonic spray pyrolysis process. In addition, their phase volume fractions have been controlled by varying the pyrolysis temperature from 400 oC to 800 oC. The structural and optical properties of the synthesized powders have been characterized by X-ray diffraction, scanning electronic microscopy and UV-vis spectroscopy. The powder with a phase volume ratio close to 1, compared with single TiOF2 and other composite powders with different phase volume fractions, was found to have superior photocatalytic activity for the degradation of rhodamine B. This result shows that the TiO2/TiOF2 heterostructure promotes the separation of the photoinduced electrons and holes and that this powder can be applicable to environmental cleaning applications.
        4,000원
        13.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Electrochemical synthesis was employed to prepare a novel hydroxyapatite/graphene (HAP/ Gr) composite powder suitable for medical applications as a hard tissue implant (scaffold). The synthesis was performed in a homogeneous dispersion containing Na2H2EDTA·2H2O, NaH2PO4 and CaCl2 with a Ca/EDTA/PO4 3− concentration ratio of 0.25/0.25/0.15M, along with 0.01 wt% added graphene nanosheets, at a current density of 137 mA cm−2 and pH value of 9.0. The field emission scanning electron microscopy and transmission electron microscopy observations of the composite HAP/Gr powder indicated that nanosized hydroxyapatite particles were uniformly placed in the graphene overlay. Raman spectroscopy, Fourier transform infrared spectroscopy and X-ray diffraction confirmed graphene incorporation in the HAP/Gr powder. The electrochemically prepared HAP/Gr composite powder exhibited slight antibacterial effect against the growth of the bacterial strain Staphylococcus aureus.
        4,000원
        14.
        2015.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe-30 wt% TiC composite powders are fabricated by in situ reaction synthesis after planetary ball millingof (Fe, TiH2, Carbon) powder mixture. Two sintering methods of a pressureless sintering and a spark-plasma sinteringare tested to densify the Fe-30 wt% TiC composite powder compacts. Pressureless sintering is performed at 1100, 1200and 1300oC for 1-3 hours in a tube furnace under flowing argon gas atmosphere. Spark-plasma sintering is carried outunder the following condition: sintering temperature of 1050oC, soaking time of 10 min, sintering pressure of 50 MPa,heating rate of 50oC/min, and in a vacuum of 0.1 Pa. The curves of shrinkage and its derivative (shrinkage rate) areobtained from the data stored automatically during sintering process. The densification behaviors are investigated fromthe observation of fracture surface and cross-section of the sintered compacts. The pressureless-sintered powder com-pacts are not densified even after sintering at 1300oC for 3 h, which shows a relative denstiy of 66.9%. Spark-plasmasintering at 1050oC for 10 min exhibits nearly full densification of 99.6% relative density under the sintering pressure of50 MPa.
        4,000원
        15.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Electronic products are a major part of evolving industry and human life style; however most of them are known to emit electromagnetic waves that have severe health hazards. Therefore, different materials and fabrication techniques are understudy to control or limit transfer of such waves to human body. In this study, nanocomposite powder is dispersed into epoxy resin and shielding effects such as absorption, reflection, penetration and multiple reflections are investigated. In addition, nano size powder (Ni, Fe2O3, Fe-85Ni, C-Ni) is fabricated by pulsed wire evaporation method and dispersed manually into epoxy. Characterization techniques such as X-ray diffraction, Scanning electron microscopy and Transmission electron microscopy are used to investigate the phase analysis, size and shape as well as dispersion trend of a nano powder on epoxy matrix. Shielding effect is measured by standard test method to investigate the electromagnetic shielding effectiveness of planar materials, ASTM D4935. At lower frequency, sample consisting nano-powder of Fe-85%Wt Ni shows better electromagnetic shielding effect compared to only epoxy, only Ni, Fe2O3 and C-Ni samples.
        4,000원
        16.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A powder-in-sheath rolling (PSR) process utilizing a copper alloy tube was applied to a fabrication of a multi-walled carbon nanotube (CNT) reinforced aluminum matrix composite. A copper tube with an outer diameter of 30 mm and a wall thickness of 2 mm was used as a sheath material. A mixture of pure aluminum powders and CNTs with the volume contents of 1, 3, 5 vol% was filled in the tube by tap filling and then processed to 93.3% height reduction by a rolling mill. The relative density of the CNT/Al composite fabricated by the PSR decreased slightly with increasing of CNTs content, but showed high value more than 98%. The average hardness of the 5%CNT/Al composite increased more than 3 times, compared to that of unreinforced pure Al powder compaction. The hardness of the CNT/Al composites was some higher than that of the composites fabricated by PSR using SUS304 tube. Therefore, it is concluded that the type of tube affects largely on the mechanical properties of the CNT/Al composites in the PSR process.
        4,000원
        17.
        2014.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A powder-in-sheath rolling method was applied to a fabrication of a carbon nano tube (CNT) reinforcedaluminum composite. A STS304 tube with an outer diameter of 34 mm and a wall thickness of 2 mm was used as asheath material. A mixture of pure aluminum powders and CNTs with the volume contents of 1, 3, 5 vol was filled inthe tube by tap filling and then processed to 73.5% height reduction by a rolling mill. The relative density of the CNT/Al composite fabricated by the powder-in-sheath rolling decreased slightly with increasing of CNTs content, but exhib-ited high value more than 98. The grain size of the aluminum matrix was largely decreased with addition of CNTs; itdecreased from 24 µm to 0.9 µm by the addition of only 1 volCNT. The average hardness of the composites increasedby approximately 3 times with the addition of CNTs, comparing to that of unreinforced pure aluminum. It is concludedthat the powder-in-sheath rolling method is an effective process for fabrication of CNT reinforced Al matrix composites.
        4,000원
        18.
        2013.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A powder in sheath rolling method was applied to the fabrication of a carbon nano tube (CNT) reinforced aluminum composite. A 6061 aluminum alloy tube with outer diameter of 31 mm and wall thickness of 2 mm was used as a sheath material. A mixture of pure aluminum powder and CNTs with a volume content of 5% was filled in the tube by tap filling and then processed to an 85% reduction using multi-pass rolling after heating for 0.5 h at 400˚C. The specimen was then further processed at 400˚C by multi-pass hot rolling. The specimen was then annealed for 1 h at various temperatures that ranged from 100 to 500˚C. The relative density of the 5vol%CNT/Al composite fabricated using powder in sheath rolling increased with increasing of the rolling reduction, becoming about 97% after hot rolling under 96 % total reduction. The relative density of the composite hardly changed regardless of the increasing of the annealing temperature. The average hardness also had only slight dependence on the annealing temperature. However, the tensile strength of the composite containing the 6061 aluminum sheath decreased and the fracture elongation increased with increasing of the annealing temperature. It is concluded that the powder in sheath rolling method is an effective process for fabrication of CNT reinforced Al matrix composites.
        4,000원
        19.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        TiB2-reinforced iron matrix composite (Fe-TiB2) powder was in-situ fabricated from titanium hydride (TiH2) and iron boride (FeB) powders by the mechanical activation and a subsequent reaction. Phase formation of the composite powder was identified by X-ray diffraction (XRD). The morphology and phase composition were observed and measured by field emission-scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDS), respectively. The results showed that TiB2 particles formed in nanoscale were uniformly distributed in Fe matrix. Fe2B phase existed due to an incomplete reaction of Ti and FeB. Effect of milling process and synthesis temperature on the formation of composite were discussed.
        4,000원
        20.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Effects of the amount of nickel powder (Ni) in Ni-carbon fiber (CF) hybrid filler systems on the conductivity(or resistivity) and thermal coefficient of resistance (TCR) of filled high density polyethylene were studied. Increases of the resistivity and TCR with increasing Ni concentration at a given hybrid filler content were observed. Using the fiber contact model, we showed that the main role of Ni in the hybrid filler system is to decrease the interfiber contact resistance when Ni concentration is less than the threshold point. The formation of structural defects leading to reduced reinforcing effect resulted in both a reduction of strength and an increase of the coefficient of thermal expansion in the composite film; these changes are responsible for the increases of both resistivity and TCR with increasing Ni concentration in the hybrid filler system.
        4,000원
        1 2 3 4 5