검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 38

        1.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 연구에서는 DNA 메틸화 억제제의 처리방법에 따라 밀 염색체와 발아 초기 생육 특성에 미치는 영향을 조사하였다. 종자를 DNA 메틸화 억제제 수용액에 침종한 처리구와 증류수 침종 후에 발아 시 DNA 메틸화 억제제 수용액을 뿌리가 흡수하는 처리구의 체세포 분열 중기 염색체 관찰 및 발아 초기의 생육을 조사하였다. 두 처리방법에서 초엽과 유근의 신장이 대조구보다 억제되는 것을 확인하였으며, 이러한 현상은 뿌리 분열 조직 세포의 활동성에 DNA 메틸화 억제제가 영향을 주어 체세포 분열 지수가 낮아지는 것을 확인하였다. 초엽과 유근의 신장은 DNA 메틸화 억제제 수용액의 흡수처리구에서 침종처리구보다 유의미하게 더 억제되었지만 침종과 흡수처리구 간의 체세포 분열지수는 유의한 차리를 보이지 않았다. 두 처리구(침종 및 흡수)에서 틈과 염색체 절단 같은 염색체 이상이 확인되었으며, 침종처리구에서는 염색체 풀림 현상과 짧은 염색체가 추가로 발생하였다.
        4,000원
        3.
        2018.10 구독 인증기관·개인회원 무료
        The pea aphid, Acyrthosiphon pisum, requires the nutritional endosymbiont, Buchnera, for the production of essential amino acids. However, it is unclear if host plant diet that varies in essential amino acids influences aphid regulation of its nutritional symbioses. We hypothesized that aphid genes respond to host plant diet when aphids feed on their specialized (alfalfa) compared to universal host plant diet (fava), which vary in essential amino acid concentrations. Using RNA-Seq and whole genome bisulfite sequencing, we compared the gene expression profiles and DNA methylation distributions of specialized aphid cells that harbor Buchnera (bacteriocytes) when aphids feed on their specialized compared to their universal host plant diets. Our results show that bacteriocyte transcription and methylation patterns differ between host plant diets. When aphids feed on their specialized host plant, they significantly up-regulate and/or hypo-methylate key aphid genes in bacteriocytes related to the amino acid metabolism, including glutamine synthetase (GS) and the glutamine transporter ApGLNT1. Moreover, regardless of which host plant aphids feed on, we observed significant up-regulation and differential methylation of the key genes in the amino acid metabolism and the glycine/serine metabolism in aphid bacteriocytes. We suggest that the regulatory response of key symbiosis genes in bacteriocytes allows aphids to feed on a specialized host plant diet with suboptimal nitrogen concentrations.
        4.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        곤충 생리현상의 가소성은 후생유전적 변화와 밀접하게 관련을 지을 수 있다. 이 가설을 증명하기 위해 광식성인 파밤나방(Spodoptera exigua)을 대상으로 상이한 먹이 조건에 따라 이 곤충의 발육과 DNA 메틸화에 영향을 주는 지 분석하였다. 동일한 코호트로 부터 얻은 갓 부화한 유충을 최종령에 이르기까지 세 가지 다른 먹이(대파, 배추, 인공사료)로 섭식 처리하였다. 이 결과 상이한 먹이 조건에 따라 유충발육속도, 용화 율 및 우화율에서 뚜렷한 차이를 보였다. 인공사료로 사육된 유충이 가장 빠른 유충발육속도와 높은 용화율 및 우화율을 나타냈다. 반면에 두 자 연 기주 가운데는 대파가 배추에 비해 파밤나방 발육에 양호하였다. 이러한 먹이에 따른 변이는 혈림프 단백질 및 혈당에서도 차이가 나타났다. 또한 발육과 연계되었을 것으로 추정되는 인슐린유사펩타이드(SeILP1) 유전자의 발현 정도도 먹이조건에 따라 상이했다. 단일항체를 이용하여 파밤나방 게놈 DNA의 시토신 메틸화를 분석한 결과 이 부위에 DNA 메틸화가 검출되었으며, 메틸화 정도는 먹이 조건에 따라 상이했다. 이 결 과들은 동일 집단의 파밤나방이 상이한 먹이 조건에 따라 발육차이를 나타내고 또한 시토신 메틸화에 변이를 보여 이 곤충의 생리적 가소성에 후 생유전적 인자가 작용하고 있는 것을 제시한다.
        4,000원
        6.
        2012.03 구독 인증기관 무료, 개인회원 유료
        DNA methyltransferase 1 (Dnmt1) gene contains three different isoform transcripts, Dnmt1s, Dnmt1o, and Dnmt1p, are produced by alternative usage of multiple first exons. Dnmt1o is specific to oocytes and preimplantation embryos, whereas Dnmt1s is expressed in somatic cells. Here we determined that porcine Dnmt1o gene had differentially methylated regions (DMRs) in 5’-flanking region, while those were not found in the Dnmt1s promoter region. The methylation patterns of the porcine Dnmt1o/Dnmt1s DMRs were investigated using bisulfite sequencing and pyrosequencing analysis through all preimplantation stages from one cell to blastocyst stage in in vivo or somatic cell nuclear transfer (SCNT). The Dnmt1o DMRs contained 8 CpG sites, which located in —640 bp to —30 bp upstream region from transcription start site of the Dnmt1o gene. The methylation status of 5 CpGs within the Dnmt1o DMRs were distinctively different at each stage from one-cell to blastocyst stage in the in vivo or SCNT, respectively. 55.62% methylation degree of the Dnmt1o DMRs in the in vivo was increased up to 84.38% in the SCNT embryo, moreover, de novo methylation and demethylation occurred during development of porcine embryos from the one-cell stage to the blastocyst stage. However, the DNA methylation states at CpG sites in the Dnmt1s promoter regions were hypomethylated, and dramatically not changed through one-cell to blastocyst stage in the in vivo or SCNT embryos. In the present study, we demonstrated that the DMRs in the promoter region of the porcine Dnmt1o was well conserved, contributing to establishment and maintenance of genome-wide patterns of DNA methylation in early embryonic development.
        4,000원
        7.
        2011.10 구독 인증기관·개인회원 무료
        There are replete numbers of reports which have apparently shown that established patterns of methylation are critical for normal mammalian development. DNA methyltransferase 1 (Dnmt1) gene contains three different isoform transcripts, Dnmt1s, Dnmt- 1o, and Dnmt1p, are produced by alternative usage of multiple first exons. Dnmt1o is specific to oocytes and preimplantation embryos, whereas Dnmt1s is expressed in somatic cells. Here we determined that porcine Dnmt1o gene had differentially methylated regions (DMRs) in 5’-flanking region, while those were not found in the Dnmt1s promoter region. The methylation patterns of the porcine Dnmt1o/Dnmt1s DMRs were investigated using bisulfite sequencing and pyrosequencing analysis through all preimplantation stages from one cell to blastocyst stage in in vivo or somatic cell nuclear transfer (SCNT). The Dnmt1o DMRs contained 8 CpG sites, which located in ‒ 640 bp to ‒ 30 bp upstream region from transcription start site of the Dnmt1o gene. The methylation status of 5 CpGs within the Dnmt1o DMRs were distinctively different at each stage from one-cell to blastocyst stage in the in vivo or SCNT, respectively. 55.62% methylation degree of the Dnmt1o DMRs in the in vivo was increased up to 84.38% in the SCNT embryo, moreover, de novo methylation and demethylation occurred during development of porcine embryos from the one-cell stage to the blastocyst stage. However, the DNA methylation states at CpG sites in the Dnmt1s promoter regions were hypomethylated, and dramatically not changed through one-cell to blastocyst stage in the in vivo or SCNT embryos. In the present study, we demonstrated that the DMRs in the promoter region of the porcine Dnmt1o was well conserved, contributing to establishment and maintenance of genome-wide patterns of DNA methylation in early embryonic development.
        8.
        2011.09 구독 인증기관 무료, 개인회원 유료
        In the present study, we identified differentially methylated region (DMR) upstream of Dnmt1o and Dnmt1s gene in early porcine embryos. Porcine Dnmt1o had at least one DMR which was located between —530 bp to —30 bp upstream from transcription start site of the Dnmt1o gene. DNA methylation analyses of Dnmt1o revealed the DMR to be hypomethylated in oocytes, whereas it was highly methylated in sperm. Moreover, the DMR upstream of Dnmt1o was gradually hypermethylated from oocytes to two cells and dramatically changed in the methylation pattern from four cells to BL stages in an in vivo. In an IVF, the methylation status in the DMR upstream of Dnmt1o was hypermethylated from one cell to eight cells, but demethylated at the Morula and BL stages, indicating that the DNA methylation pattern in the Dnmt1o upstream ultimately changed from stage to stage before the implantation. Next, to elucidate whether DNA methylation status of Dnmt1s upstream is stage-by-stage changed in during porcine early development, we analyzed the dynamics of the DNA methylation status of the Dnmt1s locus in germ cell, or one cell to BL cells. The Dnmt1s upstream was highly methylated in one and eight cells, while less methylated in two, four, morula, and BL cells. Taken together, our data demonstrated that DNA methylation and demethylation events in upstream of Dnmt1o/Dnmt1s during early porcine embryos dramatically occurred, and this change may contribute to the maintenance of genomewide DNA methylation in early embryonic development.
        4,000원
        11.
        2011.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was performed to identify the differentially methylated region (DMR) and to examine the mRNA expression of the imprinted H19 gene in day 35 of SCNT pig fetuses. The fetus and placenta at day 35 of gestation fetuses after natural mating (Control) or of cloned pig by somatic cell nuclear transfer (SCNT) were isolated from a uterus. To investigate the mRNA expression and methylation patterns of H19 gene, tissues from fetal liver and placenta including endometrial and extraembryonic tissues were collected. The mRNA expression was evaluated by real-time PCR and methylation pattern was analyzed by bisulfite sequencing method. Bisulfite analyses demonstrated that the differentially methylated region (DMR) was located between -1694 bp to -1338 bp upstream from translation start site of the H19 gene. H19 DMR (-1694 bp to -1338 bp) exhibits a normal mono allelic methylation pattern, and heavily methylated in sperm, but not in oocyte. In contrast to these finding, the analysis of the endometrium and/or extraembryonic tissues from SCNT embryos revealed a complex methylation pattern. The DNA methylation status of DMR Region In porcine H19 gene upstream was hypo methylated in SCNT tissues but hypermethylated in control tissues. Furthermore, the mRNA expression of H19 gene in liver, endometrium, and extraembryonic tissues was significantly higher in SCNT than those of control (p<0.05). These results suggest that the aberrant mRNA expression and the abnormal methylation pattern of imprinted H19 gene might be closely related to the inadequate fetal development of a cloned fetus, contributing to the low efficiency of genomic reprogramming.
        4,000원
        13.
        2010.09 구독 인증기관 무료, 개인회원 유료
        Osmolarity of culture media is one of the most important factors affecting in vitro development. This study was conducted to investigate the DNA methylation status of Pre-1 and satellite sequence in pig nuclear transfer (pNT) embryos produced under different osmolarity culture conditions. Control group of pNT embryos was cultured in PZM-3 for six days. Other two treatment groups of pNT embryos were cultured in modified PZM-3 with 138 mM NaCl or 0.05M sucrose (mPZM-3, 320 mOsmol) for two days, and then cultured in PZM-3 (270 mOsmol) for four days. Previous our studies have reported that pNT embryos cultured in both hypertonic media showed significantly higher blastocyst formation rate than that of control. The DNA methylation status of the satellite sequences in blastocyst was characterized using bisulfite-sequencing technology. The satellite region had a similar methylation pattern of in vivo blastocyst among two culture groups excepting the control group. Each level of methylation is that the satellite DNA moderately methylated (43.10% of PZM-3; 56.12% of NaCl; 55.06% of sucrose; 60.00% of in vivo embryos). As a result of the sequence of PRE-1, CpG methylation pattern was similar to three groups, including in vivo group. In case of the satellite DNA region, the osmolarity conditions were affected CpG DNA methylation status while PRE-1 sequence was not affected CpG DNA methylation in pNT blastocyst stage. These results indicate that the modification of osmolarity in a culture media may influence to spatially change of DNA methylation of repetitive sequence for pNT embryo development.
        3,000원
        15.
        2009.12 구독 인증기관 무료, 개인회원 유료
        We attempted to control the maturation promoting factor (MPF) activity and investigated the subsequent reprogramming of bovine somatic cell nuclear transfer (SCNT) embryos. Serum‐starved adult skin fibroblasts were fused to enucleated oocytes treated with 2.5 mM caffeine or 150 μM roscovitine. The MPF activity, nuclear remodeling patterns, chromosome constitutions and development of SCNT embryos were evaluated. Methylated DNA of embryos was detected at various developmental stages. The MPF activity was increased by caffeine treatment or reduced by roscovitine treatment (p<0.05). Blastocyst development was higher in the caffeine‐treated groups (27.6%) than that of the roscovitine‐treated group (8.3%, p<0.05). There was no difference in the apoptotic cell index among the three groups. However, the mean cell number of blastocysts was increased in the caffeine‐treated group (p<0.05). Higher methylation levels were observed in the Day 3 embryos of the roscovitine‐treated group (50.8%), whereas lower methylation levels were noted at Day 5 in the caffeine‐treated group (12.5%, p<0.05). These results reveal that the increase in MPF activity via a caffeine‐treatment creates a more suitable condition for nuclear reprogramming after SCNT.
        4,000원
        17.
        2008.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        DNA methylation is one of the reasons for poor survival of clone animals. The OCT-4 gene is essential for maintaining pluripotency of embryonic stem (ES) cells and early embryos. We previously reported that the 5'-promoter region of Oct-4 gene was a target of DNA methylation and the methylation status was changed variously during embryonic development in bovine. The study conducted to examine the expression and methylation pattern of tissue-dependent differentially methylated region (T-DMR) of Oct-4 gene in bovine somatic cell nuclear transfer (SCNT) and in vitro fertilization (IVF) blastocysts. The Oct-4 gene expression was evaluated by RT-PCR and fluorescence immunocytochemistry. The methylation pattern of T-DMR was analyzed using restriction mapping and bisulfite sequencing methods. The Oct-4 transcripts were highly expressed in IVF, while they were not expressed in SCNT. The Oct-4 protein was not detected or expressed at very low level in SCNT, the intensity of Oct-4 protein, however, was strong in IVF. On the other hand, the T-DMR of Oct-4 gene was hypermethylated in SCNT compared to that of IVF. These results suggested that expression and the failure of demethylation of Oct-4 gene was closely associated with incomplete development of SCNT embryos.
        4,000원
        1 2