검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 18

        1.
        2023.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The electrochemical reduction of carbon dioxide (CO2) to value-added products is a remarkable approach for mitigating CO2 emissions caused by the excessive consumption of fossil fuels. However, achieving the electrocatalytic reduction of CO2 still faces some bottlenecks, including the large overpotential, undesirable selectivity, and slow electron transfer kinetics. Various electrocatalysts including metals, metals oxides, alloys, and single-atom catalysts have been widely researched to suppress HER performance, reduce overpotential and enhance the selectivity of CO2RR over the last few decades. Among them, single-atom catalysts (SACs) have attracted a great deal of interest because of their advantages over traditional electrocatalysts such as maximized atomic utilization, tunable coordination environments and unique electronic structures. Herein, we discuss the mechanisms involved in the electroreduction of CO2 to carbon monoxide (CO) and the fundamental concepts related to electrocatalysis. Then, we present an overview of recent advances in the design of high-performance noble and non-noble singleatom catalysts for the CO2 reduction reaction.
        5,200원
        2.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The biocarbon (SKPH) was obtained from Sargassum spp., and it was evaluated electrochemically as support for the CO2 reduction. The biocarbon was synthesized and activated with KOH, obtaining a high surface area (1600 m2 g− 1) due to the activation process. Graphitic carbon formation after pyrolysis was confirmed by Raman spectroscopy. The XRD results show that SKPH has an amorphous structure with peaks corresponding to typical amorphous carbonaceous materials. FTIR was used to determine the chemical structure of SKPH. The bands at 3426, 2981, 2851, and 1604 cm− 1 correspond to O–H, C-H, and C-O stretching vibrations, respectively. Then, it compares SKPH films with different carbon films using two electrolytic systems with and without charge transfer. The SKPH film showed a capacitive behavior in the KOH, H2SO4, and, KCl systems; in the acid medium, the presence of a redox couple associated with carbon functional groups was shown. Likewise, in the [Fe(CN)6]−3 and Cu(II) systems, the charge transfer process coupled with a capacitive behavior was described, and this effect is more noticeable in the [Fe(CN)6]−3 system. Electrodeposition of copper on SKPH film showed two stages Cu(NH 3)2+ 4 /Cu(NH 3)+ 2 and Cu(NH 3)+ 2 ∕Cu in ammonia media. Hydrogen formation and the activity of CO2 are observed on SKPH film and are favored by the carbon’s surface chemistry. Cu/SKPH electrocatalyst has a catalytic effect on electrochemical reduction of CO2 and inhibition of hydrogen formation. This study showed that the SKPH film electrode responds as a capacitive material that can be used as an electrode for energy storage or as metal support.
        4,900원
        3.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 기계화학적 활성화 된 스카치테이프가 금속 이온 수용액에서 유발하는 자발적 금속 나노입자 필름 형성의 구동력과 그 크기를 전기화학적 방법으로 분석했다. 은 필름이 형성된 테이프를 질산에 녹이고, 완충용액과 섞어 전기화학 측정용 샘플을 준비했다. 양극 벗김 전압전류법의 피크 신호를 통해, 은 입자의 자발적 환원에 소모된 전하량을 측정했다. 이를 검정 곡선에 대입하여, 환원된 은의 양을 구했다. 그 결과 은의 양이 선행 연구 대비 106배 많은 점, 수용액에서 전하를 가진 이온들의 짧은 수명을 참고하여, 자발적 반응의 구동력을 라디칼로 결론 냈다.
        4,000원
        7.
        2018.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In anion exchange membrane fuel cells, Pd nanoparticles are extensively studied as promising non-Pt catalysts due to their electronic structure similar to Pt. In this study, to fabricate Pd nanoparticles well dispersed on carbon support materials, we propose a synthetic strategy using mixed organic ligands with different chemical structures and functions. Simultaneously to control the Pd particle size and dispersion, a ligand mixture composed of oleylamine(OA) and trioctylphosphine(TOP) is utilized during thermal decomposition of Pd precursors. In the ligand mixture, OA serves mainly as a reducing agent rather than a stabilizer since TOP, which has a bulky structure, more strongly interacts with the Pd metal surface as a stabilizer compared to OA. The specific roles of OA and TOP in the Pd nanoparticle synthesis are studied according to the mixture composition, and the oxygen reduction reaction(ORR) activity and durability of highly-dispersed Pd nanocatalysts with different particles sizes are investigated. The results of this study confirm that the Pd nanocatalyst with large particles has high durability compared to the nanocatalyst with small Pd nanoparticles during the accelerated degradation tests although they initially indicated similar ORR performance.
        4,000원
        9.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This manuscript explains the effective determination of urea by redox cyclic voltammetric analysis, for which a modified polypyrrole-graphene oxide (PPY-GO, GO 20% w/w of PPY) nanocomposite electrode was developed. Cyclic voltammetry measurements revealed an effective electron transfer in 0.1 M KOH electrolytic solution in the potential window range of 0 to 0.6 V. This PPY-GO modified electrode exhibited a moderate electrocatalytic effect towards urea oxidation, thereby allowing its determination in an electrolytic solution. The linear dependence of the current vs. urea concentration was reached using square-wave voltammetry in the concentration range of urea between 0.5 to 3.0 μM with a relatively low limit of detection of 0.27 μM. The scanning electron microscopy was used to characterize the morphologies and properties of the nanocomposite layer, along with Fourier transform infrared spectroscopy. The results indicated that the nanocomposite film modified electrode exhibited a synergistic effect, including high conductivity, a fast electron-transfer rate, and an inherent catalytic ability.
        4,000원
        10.
        2015.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Electrochemical reduction has previously been reported for uranium oxide and mixed oxide nuclear fuel (uranium oxide, plutonium oxide). The laboratory scale electrochemical reduction of plutonium oxide powder is demonstrated in CaCl2- 1wt%CaO. The plutonium oxide contained within a permeable steel basket cathode is sacrificed during the process. A graphite anode is also employed during the reduction, leading to a significant contamination of the product.
        4,000원
        11.
        2012.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Li2O-LiCl 용융염을 이용한 전해환원기술은 사용후핵연료로부터 우라늄 금속을 회수하기 위해 연구되고 있다. 이 전해환원기술에서는 Li2O가 촉매로 이용되기 때문에 그 농도를 유지하는 것은 매우 중요한 운전인자이다. ZrO2는 피복관의 주성분이 Zr이기 때문에 사용후핵연료에 불가피하게 함유되며, 본 연구에서는 Li2O를 촉매로 이용하는 전해환원공정에서 ZrO2의 거동을 살펴보았다. Li2O와 ZrO2의 화학반응과 전해환원공정 중에서의 생성물을 분석한 결과, Li2ZrO3와 Li4ZrO4가 주요하게 관찰되었고, 이는 Li2O의 손실을 가져오는 원인이 된다. 즉, ZrO2는 Li2O를 소모하는 역할을 하며, 반응생성물은 전기화학적으로 안정하기 때문에 Li2O의 손실이 불가피하게 된다.
        4,000원
        12.
        2012.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 850℃의 CaCl2 용융염계에서 전해환원공정을 통해 TiO2로부터 금속티타늄을 제조하였 다. Ni-TiO2 조합전극을 환원전극으로 그라파이트를 산화전극으로 사용하였으며, 셀전위를 제어하면서 TiO2의 전해환원 특성을 관찰하였다. XRD 분석을 통해 TiO2가 CaTiO3, Ti2O, Ti6O와 같은 다양한 반응 중간생성물을 거쳐 Ti 스폰지로 환원되는 것이 밝혀졌다. 또한 SEM 분석을 통해 TiO2 전해환원 반응동안 펠렛의 바깥표면부터 환원반응이 시작되어 펠렛중심으로 진행이 되는 것이 확인되었다. 전해환원 반응도 중 환원된 티타늄금속은 초기에는 다공성 스폰지 구조를 보이나 고온에서 반응이 진행됨에 따라 점차 소 결에 의해 수축되어 다공성 구조가 사라지는 현상을 보였다.
        4,000원
        13.
        2006.04 구독 인증기관·개인회원 무료
        Synthesis of iron nanopowder by room-temperature electrochemical reduction process of nanopowder was investigated in terms of phase evolution and microstructure. As process variables, reduction time and applied voltage were changed in the range of h and V, respectively. From XRD analyses, it was found that volume of Fe phase increased with increasing reduction time and applied voltage, respectively. The crystallite size of Fe phase in all powder samples was less than 30 nm, implying that particle growth was inhibited by the reaction at room temperature. Based on the distinct equilibrium shape of crystalline particle, phase composition of nanoparticles was identified by TEM observation.
        17.
        2014.06 KCI 등재 서비스 종료(열람 제한)
        Electrochemical reductive extraction of tin from semiconductor plating process wastewater was experimented using synthetic wastewater. Copper and graphite plate were used as a cathode and an anode, respectively. The tin extraction could be optimized in pH 0.5 and polar space of 60 mm. The extraction rate of tin per minute was increased as current and initial tin concentration increased, and more than 87% and 97% of tin could be extracted within 80 minutes at 500 mg/L and 1,000 mg/L of initial tin concentration, respectively. The electrochemical reaction orders and kinetic coefficients were 1.24 ~ 1.26 and 0.004 ~ 0.006 (L/mg)(n − 1)min−1. The residual concentration of tin could be expressed as Ct= (Co −0.246+ 0.0012t)−4.065.
        18.
        2012.11 KCI 등재 서비스 종료(열람 제한)
        Electrochemical reductive extraction of copper from LCD manufacturing process and through hole plating process for PCB circuit board wastewater was experimented using synthetic wastewater. Copper plate which could be used as raw material through melting with extracted copper from wastewater and graphite plate were used as a cathode and an anode, respectively. The copper extraction could be optimized in pH 2 and polar space of 45mm. The extraction rate of copper per unit energy was decreased as HRT increased and initial copper concentration decreased. As the optimal HRTs which could maximize the productivity for copper on energy, 80 ~ 110 min at 50 mg/L, 64 min at 1,000 mg/L and 77 ~ 98 min at 3,000 mg/L were determined, respectively.