검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 19

        1.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study used Computational Fluid Dynamic analysis to examine NOx reduction in hydrogen combustion, analyzing six conditions with varying air/fuel ratios, temperatures, and concentrations. Results were compared between two combustor shapes and previous experimental data. Findings showed increased air/fuel ratios decreased flame temperature and increased post-combustion O2. NOx emissions peaked at high temperatures and low O2. Numerical results aligned with previous experimental trends, validating the approach. Combustor shape differences, reflecting variations in fuel and air pipes, significantly affected flow rates and combustion positions. This reduced NOx emissions up to a certain air/fuel ratio, but excessive increases diminished this effect. The study highlights the complex relationship between combustor design, operating conditions, and NOx emissions. Further research is needed to optimize NOx reduction by considering pipe numbers and combustion locations. Future studies should explore various combustor geometries, fine-tune air/fuel ratios, and investigate additional parameters influencing NOx formation and reduction in hydrogen combustion systems.
        4,000원
        2.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As global climate change impacts become more apparent, countries are implementing various policies to achieve carbon neutrality that can be categorized into direct regulations and market-based indirect regulations. The latter, utilizing economic incentives, is considered more efficient in transforming corporate behavior and promoting voluntary efforts for carbon reduction. In alignment with international trends, South Korea has introduced the Emission Trading System (ETS) in 2015. Despite this, the domestic carbon market remains underdeveloped, with low ETS participation, particularly in the aquaculture sector. In order to activate external projects under the ETS, this study proposes short-term strategies including linking ETS with popular eco-friendly energy distribution projects, developing standardized monitoring techniques, and integrating carbon reduction initiatives with other support mechanisms such as direct payment programs. Long-term strategies focus on developing new methodologies for external projects, promoting the use of renewable energy, and enhancing technologies to reduce energy consumption in aquaculture operations. By implementing these strategies, the study aims to enhance the participation of the aquaculture sector in carbon reduction efforts, contributing to the overall goal of carbon neutrality.
        4,900원
        3.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cars using diesel have always had problems with reducing exhaust fumes, and have been studied steadily in this regard. There were studies on the remanufacturing effect of DOC catalyst deactivated by diesel vehicle smoke reduction device, analysis of vehicle fire accident cases caused by damage to diesel vehicle smoke reduction device, and related studies on the remanufacturing effect of diesel vehicle smoke reduction device DPF. This study also developed a burner system in a smoke reduction device suitable for exhaust engines to completely burn smoke generated by institutions using diesel engines in low-temperature exhaust gases. Following the development of the existing high-performance heater, burner structure capable of maintaining ignition state in exhaust flow, pulsation generated by diesel engines, and exhaust flow control unit, the actual configuration, function and effect of the device, development contents, basic data and abnormalities of the vehicle, and comparison with other developed products.
        4,000원
        4.
        2023.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 유럽연합(EU)의 환경문제와 섬유패션산업 현황을 바탕으로 스페인의 탄소배출 절감 노력과 인디텍스 그룹의 전략을 분석하였다. 특 히 인디텍스 그룹의 사례를 통해 섬유패션산업의 탄소배출 절감 전략의 효과성을 검토하며, 섬유패션산업이 어떻게 지속 가능한 방향으로 전환 될 수 있는지의 시사점을 제시하고자 한다. 특히 석유산업에 이어 두 번 째로 큰 환경 파괴원인으로 지목되는 패스트 패션의 탄소배출 문제를 조 명한다. 연간 전 세계에서 섬유패션산업은 탄소 배출량의 약 10%를 차 지하며, 이 수치는 모든 국제선 및 해상 운송의 배출량을 합친 것보다도 더 크다. 특히 패스트 패션의 생산과 유통 과정에서 발생하는 탄소배출 은 그 크기가 막대하여 지속가능성에 큰 위협을 미치고 있다. 즉, 패스트 패션의 탄소배출 문제를 해결하기 위한 전략적 접근 방식을 제시하며, 섬유패션산업의 지속가능성 향상을 위한 핵심 요소를 도출하고자 한다.
        6,600원
        5.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cars using diesel have always had problems with reducing exhaust fumes, and have been studied steadily in this regard. There were studies on the remanufacturing effect of DOC catalyst deactivated by diesel vehicle smoke reduction device, analysis of vehicle fire accident cases caused by damage to diesel vehicle smoke reduction device, and related studies on the remanufacturing effect of diesel vehicle smoke reduction device DPF. This study is also to develop an exhaust flow control unit suitable for an exhaust engine to completely burn smoke generated by an engine using a diesel engine in a low temperature exhaust gas. The main systems to be developed are high-performance heaters, burner structures that can maintain ignition in exhaust flows, and exhaust flow control units that reduce exhaust gas backflow effects caused by diesel engines.
        4,000원
        6.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        ars using diesel have always had problems with reducing exhaust fumes, and have been studied steadily in this regard. There were studies on the remanufacturing effect of DOC catalyst deactivated by diesel vehicle smoke reduction device, analysis of vehicle fire accident cases caused by damage to diesel vehicle smoke reduction device, and related studies on the remanufacturing effect of diesel vehicle smoke reduction device DPF. This study also developed an optimized system for complete combustion of smoke generated by institutions using diesel engines in low-temperature exhaust gases. The main systems to be developed are high-performance heaters, burner structures that can maintain ignition in exhaust flows, and exhaust flow control units that reduce exhaust gas backflow effects caused by diesel engines.
        4,000원
        7.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cars using diesel have always had problems with reducing exhaust fumes, and have been studied steadily in this regard. There were studies on the remanufacturing effect of DOC catalyst deactivated by diesel vehicle smoke reduction device, analysis of vehicle fire accident cases caused by damage to diesel vehicle smoke reduction device, and related studies on the remanufacturing effect of diesel vehicle smoke reduction device DPF. This study also developed a burner system in a smoke reduction device suitable for exhaust engines to completely burn smoke generated by institutions using diesel engines in low-temperature exhaust gases. The main systems to be developed are high-performance heaters, burner structures that can maintain ignition in exhaust flows, and exhaust flow control units that reduce exhaust gas backflow effects caused by diesel engines.
        4,000원
        8.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cars using diesel have always had problems with reducing exhaust fumes, and have been studied steadily in this regard. There were studies on the remanufacturing effect of DOC catalyst deactivated by diesel vehicle smoke reduction device, analysis of vehicle fire accident cases caused by damage to diesel vehicle smoke reduction device, and related studies on the remanufacturing effect of diesel vehicle smoke reduction device DPF. This study is also to develop a burner structure in a smoke reduction device suitable for an exhaust engine to completely burn smoke generated by an engine using a diesel engine in a low-temperature exhaust gas. The main systems to be developed are high-performance heaters, burner structures that can maintain ignition in exhaust flows, and exhaust flow control units that reduce exhaust gas backflow effects caused by diesel engines.
        4,000원
        9.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A heat pump system using wasted heat from thermal effluent to supply the heating energy can reduce energy consumption and emissions of greenhouse gases by greenhouse facilities nearby. The Jeju National University consortium constructed a heat pump system using the thermal effluent from the Jeju thermal power plant of KOMIPO to provide with cool or hot water to greenhouse facilities located 2.5km from the power station. In this paper, the system configuration of the heat pump system was summarized, and the results of operations for demonstration of a heating performance carried out during the winter season in 2018 were investigated. Therefore, if the heating control by supplying thermal effluent to the facility greenhouse, it can contribute to reducing the energy cost and improving quality.
        4,000원
        10.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was carried out to investigate the effect of malodor and VOCs reduction that could be achieved through the installation of a vapor recovery system (VRS) in a gas station. It was revealed that the reduction efficiencies of malodor by running VRS were about 93% around the oil feeder, 32% in the office and 45% in the site boundary. Specifically, it was remarkable that reduction efficiencies of BTEX over 90% were recorded through VRS operation. In addition, the results of continuous monitoring of THC around the oil feeder device provided good evidence of the inhibition of oil mist diffusion after running VRS.
        4,000원
        11.
        2014.12 구독 인증기관 무료, 개인회원 유료
        This study examines the contribution level of greenhouse gas(GHG) emission reduction and installation costs of renewable energy facilities. The GHG emission forecasts and industrial structures in the 16 regions of Korea are then analyzed to identify the proper supply of renewable energy sources for each region. The results show that water power is the most effective and efficient renewable energy source to reduce GHG emissions, followed by sunlight, wind power, geothermal heat, and solar heat, respectively. The 16 regions are then categorized into 4 groups based on their GHG emission forecast and industrial structure: high emission and manufacturing group, low emission and manufacturing group, low emission and service group, and high emission and service group. The proper supply of renewable energy sources for each group is then determined based on the contribution level and cost efficiency of GHG emission reduction.
        4,000원
        12.
        2014.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The performance of five kind adsorbents, which can reduce nitrogen oxide (NOx) from the diesel engine occupying 85% of the fishing boat, was carried out and the emission reduction filter was manufactured and evaluated in the adsorption efficiency of the emission gas for 240 KW diesel portable generator. As a NOx emission filter made of mordenite which has an excellent cation exchange capacity was manufactured by ball type adsorbents having excellent specific surface area. The adsorption efficiency of mordenite material applying the emission reduction filter began to show up at the operating time 10 minutes in comparison with the activated carbon and zeolite materials, and it was exposed to continue until 100% capability with passing by 20 minutes. So the adsorption efficiency of the NOx reduction filter consistently maintained at the averaged 80%.
        4,000원
        14.
        2004.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We report a carbothermal reduction process for massive synthesis of monolithic WO phase from tungsten oxide in the presence of carbon source. Carbon black powder was used as a carbon source and added to WO by 40 weight percent. Bundles of WO rods were formed over the temperature range of 80 to 90. Pure WO bundles could be separated from the mixture of WO and residual carbon black powder. Field emission character of WO phase was determined using the extracted WO rods. Flat lamp fabricated from the WO rods showed the turn-on field of 9.3 V/
        4,000원
        17.
        2018.10 KCI 등재 서비스 종료(열람 제한)
        Over the past two decades, the options for solid waste management have been changing from land disposal to recycling, waste-to-energy, and incineration due to growing attention for resource and energy recovery. In addition, the reduction of greenhouse gas (GHG) emission has become an issue of concern in the waste sector because such gases often released into the atmosphere during the waste management processes (e.g., biodegradation in landfills and combustion by incineration) can contribute to climate change. In this study, the emission and reduction rates of GHGs by the municipal solid waste (MSW) management options in D city have been studied for the years 1996-2016. The emissions and reduction rates were calculated according to the Intergovernmental Panel on Climate Change guidelines and the EU Prognos method, respectively. A dramatic decrease in the waste landfilled was observed between 1996 and 2004, after which its amount has been relatively constant. Waste recycling and incineration have been increased over the decades, leading to a peak in the GHG emissions from landfills of approximately 63,323 tCO2 eq/yr in 2005, while the lowest value of 35,962 tCO2 eq/ yr was observed in 2016. In 2016, the estimated emission rate of GHGs from incineration was 59,199 tCO2 eq/yr. The reduction rate by material recycling was the highest (-164,487 tCO2 eq/yr) in 2016, followed by the rates by heat recovery with incineration (-59,242 tCO2 eq/yr) and landfill gas recovery (-23,922 tCO2 eq/yr). Moreover, the cumulative GHG reduction rate between 1996 and 2016 was -3.46 MtCO2 eq, implying a very positive impact on future CO2 reduction achieved by waste recycling as well as heat recovery of incineration and landfill gas recovery. This study clearly demonstrates that improved MSW management systems are positive for GHGs reduction and energy savings. These results could help the waste management decision-makers supporting the MSW recycling and energy recovery policies as well as the climate change mitigation efforts at local government level.
        18.
        2016.01 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to evaluate the emission characteristics of air pollutants from incineration facilities in Jeollanam-do. We selected 8 incineration facilities depend on type and the 19 items such as dust etc. were measured at the measurement hole for emission gas from air contamination control units. The range of emission concentrations for dust was 2.8 ~ 20.9 mg/Sm3 less than permissible air discharge standards. The results of 10 gaseous contaminants such as SOx was less than permissible air discharge standards. The range of emission concentrations for NOx was 13.4 ~ 120.0 ppm, less than permissible air discharge standards. As G facility was 112.4 ppm, 120.0 ppm, it exceeded emission standard (100 ppm) twice. The range of emission concentrations for HCl was ND ~ 85.300 ppm, B Facilitiy exceeded emission standard (20 ppm) as 85.300 ppm. The range of emission concentrations for NH3 was ND ~ 76.333 ppm, A, D, H Facility exceeded emission standard (30 ppm). The concentration of each facility was 42.416 ppm, 62.930 ppm, 76.333 ppm. The results of heavy metals (5 items) showed within emission standards. G facility is operating in condition that input of urea is 100 L/day. If input of urea were changed to 50 ~ 75 L/day, the operating cost of air pollution prevention facility can be reduced by 25% ~ 50%. In this study, the correlation between urea input and nitrogen oxides was statistically significant, but the correlation between urea input and ammonia showed insignificantly. Our research attempts to evaluate the emission characteristics of air pollutants from incineration facilities and to institute a reduction plan, an effective management of incinerators.
        19.
        2011.12 KCI 등재 서비스 종료(열람 제한)
        Emission reduction program for in-use diesel vehicles(ERPDV) has been enacted since 2004 over the Seoul metropolitan area, and diesel emission reduction is forced to fulfill this regulation. This study was performed to evaluate the ERPDV using PM10 concentrations of both road-side monitoring and national background network during the period of 2004-2010. In order to assess the pure road emission, we first eliminated the long range transport effect by deducting the trend of annual national background concentrations from the road-side PM10 concentrations, and then analyzed the time series of the resultant PM10 concentrations over Seoul metropolitan area. The annual rates of variations of road-side PM10 with the deduction of trend of background level show -3.2, +0.4, and -2.4㎍/㎥/year, in Seoul, Incheon, and Gyonggi province, respectively. There are steadily decreasing trend in Seoul with all of statistic parameters such as mean, mediam, 5%ile, 10%ile, 25%ile, 75%ile, 90%ile, and 95%ile concentrations. Incheon shows some fluctuations with positive with no significant trend, and Gyonggi province shows overall decreasing but not consistent. Student-t test shows 95% significant level of ERPDV effect in Seoul, but there exists no significant level greater than 90% in both Incheon, and Kyonggi province. Total annual averaged trend over the whole Seoul metropolitan area is estimated to lie in approximately -2.9㎍/㎥/year in this study, implying the intimate involvement of ERPDV to a large extent. This is also suggesting that the further research cost-effectiveness of ERPDV with consideration of the long range transport process would be needed over the Seoul metropolitan area.