The emergence of ferrous-medium entropy alloys (FeMEAs) with excellent tensile properties represents a potential direction for designing alloys based on metastable engineering. In this study, an FeMEA is successfully fabricated using laser powder bed fusion (LPBF), a metal additive manufacturing technology. Tensile tests are conducted on the LPBF-processed FeMEA at room temperature and cryogenic temperatures (77 K). At 77 K, the LPBF-processed FeMEA exhibits high yield strength and excellent ultimate tensile strength through active deformation-induced martensitic transformation. Furthermore, due to the low stability of the face-centered cubic (FCC) phase of the LPBFprocessed FeMEA based on nano-scale solute heterogeneity, stress-induced martensitic transformation occurs, accompanied by the appearance of a yield point phenomenon during cryogenic tensile deformation. This study elucidates the origin of the yield point phenomenon and deformation behavior of the FeMEA at 77 K.
Mid-sized manufacturing companies, which account for 0.7%(5,480 companies), 13.8%(1.169 million persons) of total employment, and 15.7% of total sales, have recently experienced a lot of difficulties in management activities due to the impact of COVID-19, the U.S.-China trade war, and the collapse of global supply chains. To overcome this, revitalization of quality management activities to strengthen corporate competitiveness is emerging as an urgent task. In order for these quality management activities to achieve their intended purpose, the positive leadership of corporate managers is very important above all else. There have been many studies related to positive leadership, but most have focused on charismatic leadership and transformational leadership centered on large companies or small and medium-sized enterprises. Therefore, this study aims to present ways to strengthen the leadership of managers by empirically analyzing how the positive leadership of managers of mid-sized manufacturing companies, which was relatively under-researched, affects quality management activities and Business performance(Balanced Score Card; BSC).
This paper aims at investigating the adhesive property at damage analysis according to the shape of the DCB test specimen made of Titanium, Dualumin as the high strength nonferrous metals. In this analysis, all three specimens had the lower holes bound by the cylinder support and the top holes were elongated with the rate of 6mm/min. The study results show that the longer the load block of DCB specimens, the more reliable and durable they are. It is utilized as the basic data at investigating the damage properties of adhesives in DCB specimens made of high strength nonferrous metals.
This study focused on natural organic matter and trihalomethane removal by ozonation with various ferrous concentration in surface water. Ozonation is more affected by injection concentration than reaction time. dissolved organic carbon removal rates in ozonation increased with the increase in ferrous concentration. The highest removal was obtained at 6 mg/L of ferrous concentration. When 1 mg/L of ferrous was added with 2 mg/L of ozone concentration, it was found to be a rapid decrease in specific ultraviolet absorbance at the beginning of the reaction because ferrous acts as a catalyst for producing hydroxyl radical in ozonation. As ozone concentration increased, trihalomethane formation potential decreased. When 2 mg/L of ozone was injected, trihalomethane formation potential was shown to decrease and then increase again with the increase in ferrous concentration.
Shape memory alloys(SMAs) have revolutionized the material engineering sciences as they exhibit exclusive features i.e. shape memory effect(SME) and super-elasticity. SMAs are those alloys that when deform return to their predeformed shape upon heating, they also restore their original shape by removing the load. Research on properties of newly advent of several types of ferrous based shape memory alloys(Fe-SMAs), shows that they have immense potential to be the counterpart of Nitinol(NiTi-SMA). These Fe-SMAs have been used and found to be effective because of their low cost, high cold workability, good weldability & excellent characteristics comparing with Nitinol(high processing cost and low cold workability) SMAs. Some of the Fe-SMAs show super-elasticity. Fe-SMAs, especially Fe-Mn-Si alloys have an immense potential for civil engineering structures because of its unique properties e.g. two-way shape memory effect, super elasticity and shape memory effect as well as due to its low cost, high elastic stiffness and wide transformation hysteresis comparative to Nitinol. Further research is being conducted on SMAs to improve and impinge better attributes by improving the material compositions, quantifying the SMA phase transition temperature etc. In this research pre-existing Fe-SMAs are categorised and collected in a tabulated form. An analysis is performed that which category is mostly available. Last 50 years data of Fe-SMA publications and US Patents is collected to show its importance in terms of increasing research on such type of alloys to invent different compositions and applications. This data is analysed as per different year groups during last 50 years and it was analysed as per whether the keywords exist in title of an article or anywhere in the article. It was found that different keywords related to Fe-SMAs/categories of Fe-SMAs, almost don’t exist in the title of articles. However, these keywords related to Fe- SMAs/categories of Fe-SMAs, exist inside the article but still there are not too many publications related to Fe-SMAs/categories of Fe-SMAs.
The effect of ferrous/ferric molar ratio on the formation of nano-sized magnetite particles was investigated by a co-precipitation method. Ferrous sulfate and ferric sulfate were used as iron sources and sodium hydroxide was used as a precipitant. In this experiment, the variables were the ferrous/ferric molar ratio (1.0, 1.25, 2.5 and 5.0) and the equivalent ratio (0.10, 0.25, 0.50, 0.75, 1.0, 2.0 and 3.0), while the reaction temperature (25˚C) and reaction time (30 min.) were fixed. Argon gas was flowed during the reactions to prevent the Fe2+ from oxidizing in the air. Single-phase magnetite was synthesized when the equivalent ratio was above 2.0 with the ferrous/ferric molar ratios. However, goethite and magnetite were synthesized when the equivalent ratio was 1.0. The crystallinity of magnetite increased as the equivalent ratio increased up to 3.0. The crystallite size (5.6 to 11.6 nm), median particle size (15.4 to 19.5 nm), and saturation magnetization (43 to 71 emu.g-1) changed depending on the ferrous/ferric molar ratio. The highest saturation magnetization (71 emu.g-1) was obtained when the equivalent ratio was 3.0 and the ferrous/ferric molar ratio was 2.5.
The chemical formula of magnetite (Fe3O4) is FeO·Fe2O3, t magnetite being composed of divalent ferrous ion andtrivalent ferric ion. In this study, the influence of the coexistence of ferrous and ferric ion on the formation of iron oxide wasinvestigated. The effect of the co-precipitation parameters (equivalent ratio and reaction temperature) on the formation of ironoxide was investigated using ferric sulfate, ferrous sulfate and ammonia. The equivalent ratio was varied from 0.1 to 3.0 andthe reaction temperature was varied from 25 to 75. The concentration of the three starting solutions was 0.01mole. Jarosite wasformed when equivalent ratios were 0.1-0.25 and jarosite, goethite, magnetite were formed when equivalent ratios were 0.25-0.6. Single-phase magnetite was formed when the equivalent ratio was above 0.65. The crystallite size and median particle sizeof the magnetite decreased when the equivalent ratio was increased from 0.65 to 3.0. However, the crystallite size and medianparticle size of the magnetite increased when the reaction temperature was increased from 25oC to 75oC. When ferric and ferroussulfates were used together, the synthetic conditions to get single phase magnetite became simpler than when ferrous sulfatewas used alone because of the co-existence of Fe2+ and Fe3+ in the solution.
본 연구에서는 공업용수 중에 미량 함유될 수 있는 철 이온 제거를 위해 철 용액에 음이온 계면활성제 SDS를 주입하여 미셀을 형성한 후, 미셀 표면에 철 이온의 흡착 또는 결합으로 형성된 응집체를 관형 세라믹 정밀여과막으로 제거하였다. 음이온 계면활성제의 영향을 살펴보기 위해 일정한 1mM의 철 농도에서 음이온 계면활성제의 농도를 0~10 mM로 변화시켰다. 그 결과, 6mM 일 때 가장 높은 철 제거율 88.97%를 보였다. SDS 농도에 따른 미셀 응집체의 입도 분포를 확인하기 위해 전기영동광산란분광광도계(Electrophoretic Light Scattering Spectrometer)를 사용하여 분석 한 결과, 6mM 일때 큰 응집체의 분포도가 가장 높았다. 또한, 세라믹 분리막에 대하여 주기적 질소 역세척을 실시할 경우 역세척 주기의 영향을 조사하였다. 그 결과, NCMT-7231 (평균기공 0.10μm) 분리막의 최적 역세척 시간(BT)는 20초이었다.
A Fe(OH)2 suspension was prepared by mixing iron sulfate and a weak alkali ammonia solution. Following this, iron oxides were synthesized by passing pure oxygen through the suspension (oxidation). The effects of different reaction temperatures (30˚C, 50˚C, 70˚C) and equivalent ratios (0.1~10.0) on the formation of iron oxides were investigated. An equilibrium phase diagram was established by quantitative phase analysis of the iron oxides using the Rietveld method. The equilibrium phase diagram showed a large difference from the equilibrium phase diagram of Kiyama when the equivalent ratio was above 1, and single Fe3O4 phase only formed above an equivalent ratio 2 at all reaction temperatures. Kiyama synthesized iron oxide using iron sulfate and a strong alkali NaOH solution.
In recent years, the research in porous metal got rapid development in China, especial in Northwest Institute for Non-ferrous Metal Research (NIN). Many porous metals with different raw material and different shapes were developed, which successfully employed in many fields. We believe we will earn more rapid development in the future.
The sintered parts are mainly used for automobile industry, and a part of air conditioners. In automobile industry, the application range of sintered parts is very broad and use for a driving and a lubricating system. And air conditioner uses them for compressor. Grinding of compressor and pump parts is very difficult these days, because these parts use High hardness materials and require high precision grinding. Tool life has to be extended to decrease production cost. We analyzed processing mechanism and developed new grinding wheels for Double Disk Grinding. And, we introduce new truing technology that improved tool-life and precision.
Copper infiltration is demonstrated as a viable solution to achieve higher mechanical properties by filling the interconnected porosities of a ferrous structure with copper infiltrant. This paper will present the results of a design of experiments study based on the selected processing variables in the copper infiltration process. The variables are the following: Infiltrating temperatures, infiltrating time at pre-heat zone and hot zone, the green density of iron part, the migration of copper into the iron part at different processing conditions. The results show the flexibility of the infiltration process to attain certain mechanical properties by changing the processing conditions.