In this study, the design of fuel tank for SUVs (sports utility vehicles) was addressed through structural FE-simulation. For safety evaluation, we performed a shape analysis of fuel tank, discovered improvement measures for weak areas, and reflected them in the fuel tank design. Additionally, a strength analysis was conducted and the analysis results were reflected in the design. As a result of analysis through various design changes, it was possible to propose an appropriate fuel tank shape. Additionally, the effect of changes in the shape of the reinforcement and mounting bracket on the stiffness and strength of the fuel tank bracket was investigated.
In this study, the design of fuel tanks for SUVs (sports utility vehicles) was dealt with through structural analysis. Fuel tank analysis was performed to evaluate safety, and improvement plans for weak areas were found and reflected in the design. In addition, strength analysis and pressure analysis were performed in parallel to solve the problem of oil leakage around the lower part of the fuel tank and the rear mounting that occurred during the endurance test, and the analysis results were reflected in the design. As a result of analysis through various design changes, it was possible to present an appropriate reinforcement flange shape. In addition, when the thickness of the fuel tank was changed from 1.0mm to 0.8mm, the stiffness of the fuel tank decreased by approximately 30%, and reinforcement was required.
In this study, center marking process is numerically analyzed to investigate the characteristics of deformation of aluminium alloy bracket by the pin load. The proper size of groove which are required for marking system and the pressure of cylinder are predicted through the analyse of stress and strain fields of the plate. The results of this study show that von Mises stress is a maximum when the maximum of reaction force.
The safety at this study is investigated by flow or stress analyses due to configuration or installation direction of fuel tank in the existing CNG bus. In case of the lower ceiling with sharp type, the equivalent stress due to the explosion of fuel tank is less than the type of flat or arc. it becomes safer on passenger. In case of the installation direction of fuel tank in the existing CNG bus, the stress applied on the lower ceiling at transverse direction becomes less than at longitudinal direction. It is more stable on the safety of passenger. The harm on the explosion accident can be prevented by use of the analysis result at this study.
This is a study on the distribution of acoustic emission parameters during a burst test for a type-II CNG vehicle fuel tank. A resonant AE sensor with a central frequency of 150 kHz was attached to the composite materials in the center of the fuel tank. The pressure was increased from 30 to 100% of the expected burst pressure and was maintained for 10 minutes at each level. Damage at 70% of expected burst pressure occurred by various damage mechanisms including fiber breakage and delamination, while that of below 60% only occurred by matrix crack initiation and growth. The count, duration and rise time of the AE signal at 60% of the expected burst pressure are distributed below 500, 5000 μs and 300 μs, respectively. Then, at above 70% they increased with pressure by superimposing of individual AE signal generated at a nearby place. These results confirmed that the analysis of the distribution of AE parameters is an effective tool for estimating damage of a CNG fuel tank.
Many researches and projects are actively implemented in the academic world and industrial world in order to increase the productivity through changing utility layout. Effective layout makes the flow of parts and products go on wheels and helps labor forces and utilities to be used efficiently. In this study, we looked at effect on utility layout change through a case of a company making a fuel tank of vehicle in Korea. Due to the layout improvement, this company could have flowshop system on welding line, so the stock in line was decreased, checking the number of stock became easier than before and it was possible to evaluate exact cycle time per unit. Through not only confirming qualitative effect, but also checking quantitative effect such as UPH(Unit per Hour), we obtained the conclusion that the layout improvement increased the productivity.
본 논문은 사각형 연료 탱크 내 비점성, 비압축성, 비회전 유동에 대한 슬로싱 주파수 응답의 유한요소 해석을 다룬다. 지배방정식으로 포텐셜 이론을 기반으로 한 라플라스 방정식을 적용한다. 슬로싱 운동이 작다고 가정하여 선형화된 자유표면 조건을 적용하였고, 변수분리기법을 이용하여 이론해를 구하였다. 점성 감쇠에 따른- 에너지 소산의 영향을 구현하기 위해 가상치 점성 계수를 도입하였으며, 이고 인해 공진 주파수에서 응답의 발산을 방지할 수 있나. 슬로싱 응답의 최대 진폭을 예측하기 위해 9절점 요소를 사용한 유한요소법을 이용하여 해석하였다. 슬로싱 높이, 유체 내부 동수압 및 내부 유체력의 수치 결과는 이론해와 잘 일치하였다. 유한요소 시험 프로그램을 검증한 후, 유체높이에 따른 슬로싱 주파수 응답 특성을 분석하였다.
비행체의 선회운동 시 액체연료 저장탱크의 동응답을 ALE(arbitrary Lagrangian-Eulerian) 유한요소법을 이용하여 해석하였다. 연료탱크는 선회운동 시 내부 연료의 관성력에 의해 상당한 양의 충격하중을 받게 된다. 또한 이로 인해 유발된 큰 동 하중과 모멘트는 구조물의 안정성과 제어시스템에 영향을 미친다. 본 논문에서는 내부연료의 동적 영향력을 억제하기 위하여 링형배플을 채용하였다. 배플개수와 배플위치에 따른 연료탱크의 파라메트릭 해석을 통하여 연료탱크의 동응답 특성에 미치는 배플의 영향을 분석하였다. 유체와 구조물 사이의 연계는 ALE 유한요소법을 통하여 정확하고 효과적으로 처리되었다.
본 논문은 배플을 설치한 수평으로 놓인 원통형 탱크내 슬로싱 고유진동에 대한 유한요소 해석을 다룬다. 지배방정식으로 포텐셜 이론을 기반으로 한 라플라스 방정식을 적용한다. 이 문제를 선형의 등매개 요소를 적용한 유한요소법을 이용해 해석한다. 탱크와 배플은 강체로 가정하였으며, 배플의 효과 구현은 배플의 설치 위치에 절점을 두 개로 분리함으로써 얻을 수 있다. 고유주파수와 고유모드의 추출을 위하여 Lanczos 변환법 및 Jacobi 반복법을 도입하였다. 종진동과 횡진동 모드에 대한 수치 해석결과가 참고 문헌과 비교해 볼 때 잘 일치함을 알 수 있었다. 또한 유체 높이, 배플 개수, 내공 크기, 배플 위치 등의 파라메트릭 해석을 통하여 슬로싱 특성 및 링형 배플의 영향을 고찰하였다.
바다모래에 의해 뒷채움된 지하연료저장탱크용 연강재의 부식전류밀도, 개로전위, 전식거동 및 연간부식률에 관하여 연구한 결과 다음과 같은 결론을 얻었다. 1) 습바다모래 중에서 비저항이 감소할수록 개로전위는 비전위화되고, 부식전류밀도는 높게 배류된다. 2) 습바다모래의 비저항이 감소할수록 인가전위 부가에 의한 부식전류밀도는 자연전위에서의 부식전류밀도보다 급격히 증가한다. 3) 습바다모래 중에서 비저항이 감소할수록 연간부식률은 선형적으로 증가함으로 지하연료저장탱크에 바다모래로 뒷채움하는 경우 습기가 유입하면 지하연료저장탱크의 부식성은 민감할 것으로 판단된다.