검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 15

        1.
        2016.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, a study on reducing the weight of the robot arm, which enables a high-speed operation and enables reducing the energy consumption has been actively carried out. A lightweight robot arm is hard to control because it behaves like a flexible body rather than a rigid body. This paper proposes a controller which combines a PID controller and a fuzzy logic controller for control the position and vibration of the flexible robot arm. In order to show the effectiveness of the proposed controller, MSC.ADAMS computational model which incorporates the finite element flexible robot arm model is developed, and is used for performing simulations. Simulations are carried out with two reference inputs, and three end masses. Simulation results show that the proposed controller controls the position and vibration of the flexible robot arm adaptively without being affected by the reference input and the end mass.
        4,000원
        4.
        2003.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Autonomous mobile robots based on the Web have been already used in public places such as museums. There are many kinds of problems to be solved because of the limitation of Web and the dynamically changing environment. We present a methodology for intelligent mobile robot that demonstrates a certain degree of autonomy in navigation applications. In this paper, we focus on a mobile robot navigator equipped with neuro-fuzzy controller which perceives the environment, make decisions, and take actions. The neuro-fuzzy controller equipped with collision avoidance behavior and target trace behavior enables the mobile robot to navigate in dynamic environment from the start location to goal location. Most telerobotics system workable on the Web have used standard Internet techniques such as HTTP, CGI and Scripting languages. However, for mobile robot navigations, these tools have significant limitations. In our study, C# and ASP.NET are used for both the client and the server side programs because of their interactivity and quick responsibility. Two kinds of simulations are performed to verify our proposed method. Our approach is verified through computer simulations of collision avoidance and target trace.
        4,000원
        5.
        1999.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        대형구조물의 진동감소를 위한 슬라이딩 모드 퍼지 제어기(Sliding Mode Fuzzy Control SMFC)에 대하여 연구하였다 본 제어기에 사용된 퍼지 추론기의 규칙은 비선형 제어기법의 하나인 슬라이딩 모드 제어기를 기반으로 하여 구성되었다 그결과 제어기의 퍼지성은 제어시스템을 시스템 계수의 불확실성과 구조물에 작용되는 외부하중의 불확실성에 대하여 강인한 성질은 갖게 하였으며 제어 규칙의 비선형성으로 인하여 제어기는 선형제어기에 비하여 보다 효율적인 되었다 복잡한 수학 해석에 기반한 종래의 제어기법에 비하여 퍼지 이론에 기반한 본 제어기법은 제어기의 설계절차가 매우 편리하다는 장점을 갖게 된다. 제안된 제어기법의 검증을 위하여 미국 토목학회 산하 구조제어위원회(ASCE Committee on Structural Control)에서 주도한 벤치마크 문제에 대하여 적용시켜 보았다 본 연구의 제어결과를 다른 연구자들에 의하여 발표된 {{{{ ETA _mixed _2\infty }}, optimal polynomial control neural networks control 슬라이딩 모드 제어의 벤치마크 결과와 비교하였으며 그 결과 제안된 제어기법이 구조물의 진동을 매우 효율적으로 감소시키며 제어기의 설계절차가 쉽고 편리함을 확일 할 수 있었다.
        4,300원
        6.
        1993.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper presents a design method of fuzzy controller based on TSK fuzzy model. By using the proposed method, we can design fuzzy controller mathematically, which guarantees the stability of fuzzy system. We derived a theorem related to the stability of fuzzy system. In that theorem, we show that the fuzzy system has the same stable state transition matrix as we desire. The validity of the proposed method is shown through an experiment of DC motor velocity control.
        4,000원
        7.
        1990.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        비선형의 특성을 갖고 있는 DC 서보 모터의 속도 제어에 퍼지 제어기의 사용을 제안하였다. 퍼지 제어기는 퍼지 모델로부터 설계되며, 그 퍼지 모델은 시스템의 입출력 데이터로 인식되고 비선형 시스템의 표현에 뛰어난 능력을 갖고 있다. 따라서 퍼지 모델로부터 설계되는 퍼지 제어기는 시스템의 비선형 특성이 잘 반영되어지며 그러한 점은 서보 모터의 속도 제어에 응용한 결과 잘 알 수 있었다. 즉 퍼지 제어기에 비해 고속 제어가 가능해졌으며 정상 리플(ripple)이 감소하였다. 또한 이 퍼지 제어기에서 사용되는 퍼지 집합의 멤버쉽 함수는 간단한 선형 구분 함수이므로 퍼지 제어기도 간략한 형태로 표현되었다
        4,000원
        8.
        2012.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        The problem of spacecraft attitude control is solved using an adaptive neuro-fuzzy inference system (ANFIS). An ANFIS produces a control signal for one of the three axes of a spacecraft’s body frame, so in total three ANFISs are constructed for 3-axis attitude control. The fuzzy inference system of the ANFIS is initialized using a subtractive clustering method. The ANFIS is trained by a hybrid learning algorithm using the data obtained from attitude control simulations using state-dependent Riccati equation controller. The training data set for each axis is composed of state errors for 3 axes (roll, pitch, and yaw) and a control signal for one of the 3 axes. The stability region of the ANFIS controller is estimated numerically based on Lyapunov stability theory using a numerical method to calculate Jacobian matrix. To measure the performance of the ANFIS controller, root mean square error and correlation factor are used as performance indicators. The performance is tested on two ANFIS controllers trained in different conditions. The test results show that the performance indicators are proper in the sense that the ANFIS controller with the larger stability region provides better performance according to the performance indicators.
        9.
        2010.03 KCI 등재 서비스 종료(열람 제한)
        Since fuzzy controllers are nonlinear, it is more difficult to set the controller gains and to analyse the stability compared to conventional PID controllers. This paper proposes a fuzzy PD+I controller for tracking control which uses a linear fuzzy inference(product-sum-gravity) method based on a conventional linear PID controller. In this scheme the fuzzy PD+I controller works similar to the control performance as the linear PD plus I(PD+I) controller. Thus it is possible to analyse and design an fuzzy PD+I controller for given systems based on a linear fuzzy PD controller. The scaling factors tuning scheme, another topic of fuzzy controller design procedure, is also introduced in order to fine performance of the fuzzy PD+I controller. The scaling factors are adjusted by a real-coded genetic algorithm(RCGA) in off-line. The simulation results show the effectiveness of the proposed fuzzy PD+I controller for tracking control problems by comparing with the conventional PID controllers.
        10.
        2008.08 KCI 등재 서비스 종료(열람 제한)
        본 논문은 파라미터 변화나 외란이 존재하는 환경에서 컨테이너 크레인의 트롤리 위치와 컨테이너의 흔들림을 효과적으로 제어할 수 있는 모델기반 퍼지제어기를 제안한다. 이를 위해 우선 파라미터 변화에 대응할 수 있는 모델링 기법인 T-S 퍼지모델을 구현하고, 소속함수의 파라미터를 실수코딩 유전알고리즘(RCGA)으로 조정하는 문제를 다룬다. 다음으로 퍼지모델의 각 서브시스템에 대해 LQ 제어기 법을 사용하여 서브제어기를 설계하고, 이렇게 설계된 서브제어기를 ROGA로 조정된 퍼지모델의 소속함수로 퍼지결합하여 제안하는 모델기반 퍼지제어기를 구성한다. 시뮬레이션을 통해 RCGA로 조정된 소속함수를 사용하는 퍼지모델은 컨테이너 크레인의 비선형 모델의 출력에 잘 추종하였고, 모델기반 퍼지제어기도 파라미터 변화와 외란이 존재하는 환경에서 강인한 제어를 수행하고 있음을 확인하였다.
        11.
        2007.09 KCI 등재 서비스 종료(열람 제한)
        This paper proposes a method of avoiding obstacles and tracking a moving object continuously and simultaneously by using new concepts of virtual tow point and fuzzy danger factor for differential wheeled mobile robots. Since differential wheeled mobile robot has smaller degree of freedom to control and are non-holonomic systems, there exist multiple solutions (trajectories) to control and reach a target position. The paper proposes 'fuzzy danger factor' for obstacles avoidance, 'virtual tow point' to solve non-holonomic object tracking control problem for unique solution and three kinds of fuzzy logic controller. The fuzzy logic controller is policy decision controller with fuzzy danger factor to decide which controller's result is more valuable when the mobile robot is tracking a moving object with obstacles to be avoided.
        12.
        2002.06 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Temperature and humidity are the most important factors and should be effectively controlled for the cold storage of graius. Fuzzy logic can be easily implemented to the MIMO(Multi-Input Multi-Output) control systems. For the cold storage in grain bin, fuzzy logic was applied to an air conditioning system. The capacities of the grain bin and the air conditioner are 80 tons and 30㎾, respectively. Also, the target values of temperature and relative humidity in outlet duct of the air conditioner were 8 and 75%, respectively. In order to control temperature and relative humidity of air, a damper in inlet duct was manipulated for temperature control and a heater was used for humidity control. Temperature deviation and change of temperature deviation were used as input parameters for the fuzzy system. Humidity was only considered as a load. The experimental results showed that the controlled temperature of exhausted air was maintained at 82. Relative humidity of the air was also controlled at the target relative humidity of 50∼80%.
        13.
        2000.06 KCI 등재 서비스 종료(열람 제한)
        In this paper, we propose the Chaos Fuzzy controller to analyze the chaotic character of time series obtained from the specific plant and to predict the short-term for power consumption of the plant using the Fuzzy controller. We compared the predicted data with the active ones and checked the error generated by them after we time series of supplied power to the proposed controller. As a result of the simulation, we obtained a admirable consequence that the proposed controller can be advanced through various and accurate data acquisition, and continuous analysis of the resident and industrial environment.
        14.
        2000.06 KCI 등재 서비스 종료(열람 제한)
        In servo-system which need fast response and accuracy, PID controller has a good steady-state performance, but has a poor transient response performance causing a load be changed. Compared to these features, FLC(Fuzzy Logic Controller) has a good transient response performance for changed load, but has a little Poor steady-state performance. In this paper, Compensated Fuzay Controller which consists of PID controller and FLC is proposed to modify these disadvantages and is examined through simulation to evaluate its functions.
        15.
        1981.12 KCI 등재 서비스 종료(열람 제한)
        Many studies have been done in the field of fuzzy logic theory, but it's application is not so much, and particularly, there isn't any application to the ship's steering system, until now. This paper is to survey the effect of application of fuzzy logic control to the ship's steering system. The controller is made up of a set of Linguistic Control Rules which are conditional linguistic statements connecting the inputs and the output, and take the inputs derived from the errors, that is, deviation angle and it's angular velocity. These two variables together give information about the state of the steering system, and the Linguistic Control Rules are implemented on the digital computer. The characteristics of this system were investigated through the computer simulation and satisfactory results compared with that of the conventional PD controller were obtained.