검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 15

        1.
        2024.10 구독 인증기관·개인회원 무료
        국내 콘크리트 구조물의 노후화가 진행됨에 따라 안전관리를 위한 효과적인 보수 및 보강이 요구되고 있다. 특히, 교량 바닥판은 교통하중과 염화물 침투 등 다양한 유해환경에 직접 노출되어 지속적인 열화가 발생하고 있다. 국내외에서는 교량 바닥판 유지보수 의사결정을 위해 비파괴 조사 방법 중 하나인 지표투과레이더(Ground Penetrating Radar, GPR) 탐사가 주로 활용되고 있다. 차량형 다채널 GPR 장비를 통해 취득된 방대한 양의 탐사자료는 해석하는 데 많은 시간이 소요되며 분석가의 주관이나 숙련도에 따라 해석결과가 달라질 수 있다. 이러한 문제를 해결하기 위해 최근에는 딥러닝 (Deep Learning) 기반의 GPR 자료해석 기법들이 제안되고 있다. 본 연구에서는 교량 바닥판 상태 평가 작업 효율 향상 을 위해 딥러닝 기반 GPR 자료해석 기법을 적용하였다. 현장자료 예제로는 영동대교 정밀안전진단 과업에서 교량 바닥 판 상태조사를 위해 취득한 GPR 자료를 사용하였으며 딥러닝 기법 적용 결과를 분석가의 해석결과와 비교하여 예측 성 능을 평가하였다.
        3.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study aims to evaluate the applicability of ground penetrating radar (GPR) for surveying utility pipes under sidewalks made of concrete brick and plate-stone block pavements. METHODS : GPR tests were conducted at two test sections to detect layer boundary and utility pipes under the pavements. The central frequency of the single-channel GPR was 800, 500, 250, and 100 MHz, and the central frequency of multi-channel (8) GPR was 450 MHz. GPR signals were analyzed in terms of 1-D (A-scan) and 2-D (B-scan) profiles. RESULTS: From the A-scan data analysis, the vertical resolution of the GPR ranged from 7.3 cm for 800 MHz to 133.1 cm for 100 MHz in the concrete brick block pavement and 13.9 cm for 800 MHz to 144.2 cm for 100 MHz in plate stone block pavement. From the B-scan data analysis, 250 MHz to 500 MHz GPR was sufficient to differentiate the layer boundary at a depth of 1.0~1.5 m to detect utility pipes at a depth of 0.5~2.0 m in both block pavements. In the plate-stone block pavement, GPR signal attenuation was greater because of the wire mesh in the concrete layer. Thus, the penetration depth was approximately 80% of the concrete brick-block pavement. CONCLUSIONS : The penetration depth and vertical resolution of GPR in the sidewalk paved with blocks were comparable to those of roadway pavement. Among the GPR evaluated, the 250 MHz GPR was the most desirable, and the 500 MHz GPR was affordable for the investigation of underground pipes situated up to 2.0~3.0 m under sidewalks.
        4,000원
        4.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The purpose of this study is to compare the advantages and disadvantages of 3D multichannel ground penetrating radar (GPR) equipment, which is mainly used for road cavity detection. The optimal signal analysis method was also proposed for 3D GPR data. METHODS: Four types of 3D GPR equipment were used to detect road cavities in a pilot road section in Seoul. The obtained GPR signals were evaluated in the time and frequency domain using raw data. In addition, various types of filters were applied to time domain (B-scan) data to examine the optimal signal processing. RESULTS: The time and frequency domain analysis of raw data showed that all the equipment produced reverse and strong signal reflections owing to the low dielectric permittivity of air in the cavity compared with neighbor materials. Also, the asymmetric parabolic curve was observed as well. The optimal signal processing method was determined to detect road cavities: zero-setting and background removal should be applied to all equipment. Bandpass filtering can be optionally applied to remove high-frequency noise or direct waves. CONCLUSIONS: Despite the different specifications of GPR equipment in terms of signal generation and bandwidth, the GPR signals were appropriate in terms of zero-setting, noise level, and depth of investigation. Therefore, all the multichannel GPR devices evaluated were found to be suitable to detect road cavities located at depths of 1.0 and 1.5 m after the application of proper filtering process.
        4,000원
        5.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        OBJECTIVES: The objective of this study is to detect road cavities using multi-channel 3D ground penetrating radar (GPR) tests owned by the Seoul Metropolitan Government. METHODS: Ground-penetrating radar tests were conducted on 204 road-cavity test sections, and the GPR signal patterns were analyzed to classify signal shape, amplitude, and phase change. RESULTS : The shapes of the GPR signals of road-cavity sections were circular or ellipsoidal in the plane image of the 3D GPR results. However, in the longitudinal or transverse direction, the signals showed mostly unsymmetrical (or symmetrical in some cases) parabolic shapes. The amplitude of the GPR signals reflected from road cavities was stronger than that from other media. No particular pattern of the amplitude was found because of nonuniform medium and utilities nearby. In many cases where road cavities extended to the bottom of the asphalt concrete layer, the signal phase was reversed. However, no reversed signal was found in subbase, subgrade, or deeper locations. CONCLUSIONS: For detecting road cavities, the results of the GPR signal-pattern analysis can be applied. In general, GPR signals on road cavity-sections had unsymmetrical hyperbolic shape, relatively stronger amplitude, and reversed phase. Owing to the uncertainties of underground materials, utilities, and road cavities, GPR signal interpretation was difficult. To perform quantitative analysis for road cavity detection, additional GPR tests and signal pattern analysis need to be conducted.
        4,000원
        6.
        2016.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The objective of this study was to determine the relationship between the dielectric characteristics of asphalt mixtures and the air voids present in them using ground penetrating radar (GPR) testing. METHODS : To measure the dielectric properties of the asphalt mixtures, the reflection coefficient method and the approach based on the actual thickness of the asphalt layer were used. An air-couple-type GPR antenna with a center frequency of 1 GHz was used to measure the time for reflection from the asphalt/base layer interface. A piece of aluminum foil was placed at the interface to be able to determine the reflection time of the GPR signal with accuracy. An asphalt pavement testbed was constructed, and asphalt mixtures with different compaction numbers were tested. After the GPR tests, the asphalt samples were cored and their thicknesses and number of air voids were measured in the laboratory. RESULTS: It was found the dielectric constant of asphalt mixtures tends to decrease with an increase in the number of air voids. The dielectric constant values estimated from the reflection coefficient method exhibited a slight correlation to the number of air voids. However, the dielectric constant values measured using the approach based on the actual asphalt layer thickness were closely related to the asphalt mixture density. Based on these results, a regression equation to determine the number of air voids in asphalt mixtures using the GPR test method was proposed. CONCLUSIONS: It was concluded that the number of air voids in an asphalt mixture can be calculated based on the dielectric constant of the mixture as determined by GPR testing. It was also found that the number of air voids was exponentially related to the dielectric constant, with the coefficient of determination, R2, being 0.74. These results suggest that the dielectric constant as determined by GPR testing can be used to improve the construction quality and maintenance of asphalt pavements.
        4,000원
        7.
        2016.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The objective of this study is to determine the optimal frequency of ground penetrating radar (GPR) testing for detecting the voids under the pavement. METHODS : In order to determine the optimal frequency of GPR testing for void detection, a full-scale test section was constructed to simulate the actual size of voids under the pavement. Voids of various sizes were created by inserting styrofoam at varying depths under the pavement. Subsequently, 250-, 500-, and 800-MHz ground-coupled GPR testing was conducted in the test section and the resulting GPR signals were recorded. The change in the amplitude of these signals was evaluated by varying the GPR frequency, void size, and void depth. The optimum frequency was determined from the amplitude of the signals. RESULTS: The capacity of GPR to detect voids under the pavement was evaluated by using three different ground-coupled GPR frequencies. In the case of the B-scan GPR data, a parabolic shape occurred in the vicinity of the voids. The maximum GPR amplitude in the A-scan data was used to quantitatively determine the void-detection capacity. CONCLUSIONS: The 250-MHz GPR testing enabled the detection of 10 out of 12 simulated voids, whereas the 500-MHz testing allowed the detection of only five. Furthermore, the amplitude of GPR detection associated with 250-MHz testing is significantly higher than that of 500-MHz testing. This indicates that 250-MHz GPR testing is well-suited for the detection of voids located at depths ranging from 0.5~2.0 m. Testing at frequencies lower than 250 MHz is recommended for void detection at depths greater than 2 m.
        4,000원
        8.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The objective of this study is to propose a quality control and quality assurance method for use during asphalt pavement construction using non-destructive methods, such as ground penetrating radar (GPR) and an infrared (IR) camera. METHODS: A 1.0 GHz air-coupled GPR system was used to measure the thickness and in situ density of asphalt concrete overlay during the placement and compaction of the asphalt layer in two test construction sections. The in situ density of the asphalt layer was estimated based on the dielectric constant of the asphalt concrete, which was measured as the ratio of the amplitude of the surface reflection of the asphalt mat to that of a metal plate. In addition, an IR camera was used to monitor the surface temperature of the asphalt mat to ensure its uniformity, for both conventional asphalt concrete and fiber-reinforced asphalt (FRA) concrete. RESULTS: From the GPR test, the measured in situ air void of the asphalt concrete overlay gradually decreased from 12.6% at placement to 8.1% after five roller passes for conventional asphalt concrete, and from 10.7% to 5.9% for the FRA concrete. The thickness of the asphalt concrete overlay was reduced from 7.0 cm to 6.0 cm for the conventional material, and from 9.2 cm to 6.4 cm for the FRA concrete. From the IR camera measurements, the temperature differences in the asphalt mat ranged from 10℃ to 30 ℃ in the two test sections. CONCLUSIONS: During asphalt concrete construction, GPR and IR tests can be applicable for monitoring the changes in in situ density, thickness, and temperature differences of the overlay, which are the most important factors for quality control. For easier and more reliable quality control of asphalt overlay construction, it is better to use the thickness measurement from the GPR.
        4,000원
        9.
        2017.04 서비스 종료(열람 제한)
        Current ASTM specification provide an approach for directly correlating attenuations of the bottom deck or the top rebar from ground penetrating radar (GPR) to deck condition when corrosion is the primary mechanism for concrete deterioration. In this study, GPR tests were conducted on the bridge decks in public service and the characteristics of signal attenuation were investigated with deck condition. As will be discussed, this approach is recommended for further evaluation and incorporation within ASTM D 6087-08.
        10.
        2016.10 서비스 종료(열람 제한)
        The purpose of this study is a image processing program development to consider the domestic situation of GPR detection. Therefore the image processing program will be developed to extract and to visualize the measured raw data.
        11.
        2012.11 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 콘크리트 교량 바닥판의 열화를 비파괴시험인 지표투과레이더(GPR)를 이용하여 평가하는 방법을 개발하였다. 콘크리트 교량 바닥판의 유전 상수를 계산하기 위하여 비접촉식 GPR 안테나를 이용하여 2층 구조체에 적용할 수 있는 확장형 공통중간점 방법을 개발하였다. 콘크리트 교량 바닥판의 열화 깊이와 열화 상태는 콘크리트 교량 바닥판의 유전 상수와 표면대비 평균 유전상수비를 이용하여 평가하였다. 제안된 방법을 검증하기 위하여 GPR 현장 시험을 공용수명이 오래된 콘크리트 교량에서 실시하였다. 시험 결과 새로 제안된 방법을 이용하여 추정된 두께와 열화 깊이가 어느 정도 신뢰성을 가지는 것으로 나타났다.