검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 21

        1.
        2023.05 구독 인증기관·개인회원 무료
        Nowadays, transferred type arc plasma torches have been widely present in industrial applications, in particular, using melting pool of electrically conducting materials such as arc furnace, welding and volume reduction of radioactive wastes. In these applications, the melting pools are normally employed as an anode, thus, heat flux distributions on anode melting pool need to be characterized for optimum design of melting pool system. For this purpose, we revisited the one-dimensional model of the anode boundary layer of arcs and solved governing equations numerically by using Runge-Kutta method. In addition, the direct melting process of non-combustible wastes in the crucibles were discussed with the calculation results.
        2.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문은 슬로싱 상태에 놓인 포화 상태 액체수소탱크에서 열 유속 및 BOG(Boil-off gas)의 경향을 다루고 있다. 특히, 액체-기체 간의 침투 및 혼합에 의한 열 교환에 관심을 두었다. 먼저, VOF(Volume of fluid)와 Eulerian 기반의 다상 유동모델로 모형 슬로싱 실험 을 모사하여 압력을 예측하고 계측된 값과 비교하였다. 자유 수면 및 충격 압력 실험 결과와 해석 결과를 비교하였으며, 유체의 속도 예측에서 정확할 수 있음을 간접적으로 증명하였다. 그리고 2차원의 Type-C 원통형 수소탱크를 대상으로 다상열유동해석을 수행하 였다. 이때 포화상태에 놓인 액체 및 기체수소를 가정하고, 해석을 통해 각 상간의 혼합에 의한 열 교환의 수준을 확인하고자 하였다. 단, 상간의 열 교환만을 관심으로 두고 있었으므로 질량전달 및 기화모델은 해석에서 제외하였다. 최종적으로 상의 혼합으로 인해 액 체수소로 유입되는 열 유속의 기여도에 대하여 정리하였다. 또한 액체수소로 유입되는 열 유속과 집중 질량 기반의 간이식을 통해 BOG 발생량 및 경향을 예측하고 분석하였다.
        4,000원
        3.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper reports critical heat flux(CHF) performance on wire heater according to material, thickness, length, cross sectional shape. Water was employed as the working fluid, which was saturated at 1 atm. By comparison of CHF values with difference conditions of wire length, contact resistance inherent in the experimental apparatus could be analyzed, which had made the bias error in many research groups. So, exact value of CHF could be measured, which was consistent with the literatures. The CHF value showed decrease tendency, as the cross sectional area increased and reach to the capillary length of the working fluid. Meanwhile, the effect of thermal properties on CHF was not observed in the experimental cases. This data would be used as a reference data in research field of CHF using wire heater, i.e. reactivity initiative accident(RIA).
        4,000원
        4.
        2019.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The multi-layer insulating curtains used in the experiment was produced in six combinations using non-woven fabric containing aerogel and compared and analyzed by measuring heat flux and heat perfusion rates due to weight, thickness and temperature changes. Using silica aerogel, which have recently been noted as new material insulation, this study tries to produce a new combination of multi-layer insulating curtains that can complement the shortcomings of the multi-layer insulating curtains currently in use and maintain and improve its warmth, and analyze the thermal properties. The heat flux means the amount of heat passing per unit time per unit area, and the higher the value, the more heat passing through the multi-layer insulating curtain, and it can be judged that the heat retention is low. The weight and thickness of multi-layer insulation curtains were found to be highly correlated with thermal insulation. In particular, insulation curtains combined with aerogel meltblown non-woven fabric had relatively higher thermal insulation than insulation curtains with the same number of insulation materials. However, the aerogel meltblown non-woven fabric is weak in light resistance and durability, and there is a problem that the production process and aerogel are scattering. In order to solve this problems, the combination of expanded aerogel non-woven fabric and hollow fiber non-woven fabric, which are relatively simple manufacturing processes and excellent warmth, are suitable for use in real farms.
        4,000원
        5.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        When the heat flux on the heating surface following changing heat condition in the boiling heat transfer system exceeds critical heat flux, the critical heat flux phenomenon is going over to immediately the film boiling area and then it is occurred the physical destruction phenomenon of various heat transfer systems. In order to maximize the safe operation and performance of the heat transfer system, it is essential to improve the CHF(Critical Heat Flux) of the system. Therefore, we have analysis the effect of improving CHF and characteristics of heat transfer following the nanoparticle coating thickness. As the results, copper nanocoating time are increased to CHF, and in case of nano-coatings are increased spray-deposited coating times more than in the fure water; copper nanopowder is increased up to 6.40%. The boiling heat transfer coefficients of the pure water are increased up to 5.79% respectively. Also, the contact angle is decreased and surface roughness is increased when nano-coating time is increasingly going up.
        4,000원
        6.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a direct contact membrane module was manufactured to be used in a pilot scale membrane distillation process to treat 3 m3/day of the digestate produced from anaerobic digestion of livestock manure. In order to investigate the performance of the membrane module, permeate flux was measured with and without spacer inside the module under various condition of temperature difference and cross flow velocity (CFV) through the membrane surfaces. Flux recovery rate after chemical cleaning was also investigated by applying three different cleaning methods. Additionally, thermal energy consumption was theoretically simulated based on actual pilot plant operation conditions. As results, we observed flux of the module with spacer was almost similar to the theoretically predicted value because the installation of spacer reduced the channeling effect inside the module. Under the same operating condition, the permeate flux also increased with increasing temperature difference and CFV. As a result of chemical in-line cleaning using NaOCl and citric acid for the fouled membranes, the recovery rate was 83.7% compared to the initial flux when NaOCl was used alone, and 87% recovery rate was observed when only citric acid was used. However, in the case of using only citric acid, the permeate flux was decreased at a rapid rate. It seemed that a cleaning by NaOCl was more effective to recover the flux of membrane contaminated by the organic matter as compared to a cleaning by citric acid. The total heat energy consumption increased with increasing CFV and temperature difference across the membrane. Thus, further studies should be intensively conducted to obtain a high permeate flux while keeping the energy consumption to a minimum for a practical application of membrane distillation process to treat wastewater.
        4,000원
        7.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we designed the 3-dimensional tire mold according to the A automobile company’s tire model, and analysed the distribution of temperature of mold using the numerical method when the heat flux and heat transfer time at the surface of tire mold were changed. A analysis region of mold was the 1/16 of entire mold, and the grid number was about more than 880 thousand. In order to analyze the temperature change of mold, the thinnest part of the mold was chosen as the research object, and then the temperature of 6 points on the vertical downward direction of the thinnest part was analyzed with the time change. While the numerical condition was that heat flux was 321,200 W/m2, 440,000 W/m2 and 880,000 W/m2, and measuring time was 0.1 second, 0.2 second, 0.5 second and 1 second, respectively. As a result, the temperature difference between the surface temperature and the lowest temperature of mold was 7.3℃ when the heat transfer time was 0.1 second. Also, the minimum temperature difference was almost 0.11℃ when the heat transfer increased to 1 second. It can be explained that the main material of tire mold was aluminum and its thermal conductivity was high (k=140 W/m·K). In addition, when the heat transfer time was more than 1 second, the heat flux of mold surface will be transmitted at the inside of the thinnest part, and the heat transfer will be a marked difference according to the shape of the thinnest part.
        4,000원
        8.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An algebraic model for turbulent heat fluxes is proposed on the basis of the elliptic blending equation. The algebraic model satisfies the temperature-pressure gradient correlation characteristics of near-wall region and the flow center region far away from the wall. That is, the turbulent heat flux conditions for both regions are connected by the solution of the elliptic blending equation. The predictions of turbulent heat transfer in a plane channel flow have been carried out with constant wall heat flux and constant wall temperature difference boundary conditions respectively. Also, the rotating channel flow with constant wall temperature difference is considered to test the applicability of the model. The prediction results show that the distributions of the turbulent heat fluxes and mean temperature are well captured by the present algebraic heat flux model.
        4,000원
        9.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An algebraic model for turbulent heat fluxes which is originally suggested by Suga & Abe is modified on the basis of the elliptic blending equation. In order to satisfy the heat transfer characteristics of near-wall region and the flow center region far away from the wall, the model coefficients of the algebraic heat flux model are modified by using the solution of the elliptic blending equation. The predictions of turbulent heat transfer in a plane channel flow have been carried out with constant wall heat flux and constant wall temperature difference boundary conditions respectively. Also, the predictions are performed at various Prandtl numbers to test the applicability of the model. The prediction results show that the distributions of the turbulent heat fluxes and mean temperature are well captured by the modified algebraic heat flux model
        4,000원
        10.
        2014.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        극저온 액체 상태의 LNG는 주거용과 산업용으로 공급되기 전에 가스 상태로 변환된다. 이러한 재가스화 과정 중에 LNG는 83.7×104 kJ/kg 정도의 많은 냉열에너지를 제공한다. 이 냉열에너지를 일부 선진국들에서는 질소, 수소, 헬륨과 같은 극저온 유체들의 액화, 제빙 및 냉방시스템에 이용하고 있다. 따라서 우리나라에서도 인천, 평택 및 통영 LNG 인수기지 주변에 LNG의 냉열에너지를 이용한 냉열에너지 회수시스템을 설립할 필요가 있다. 여기서는 저열유속상태에서 상변화를 동반하는 LNG의 유동거동 특성을 파악하기 위해 LNG의 85 %를 차지하는 메탄을 작동유체로 사용하였다. 또한 본 논문은 극저온 열교환기 내부를 흐르는 메탄과 질소, 프로판, R11 및 R134a의 유동경계에 영향을 주는 관 직경, 관의 경사각도 및 포화압력의 효과를 보여준다. 또한 여기서 얻어진 이론적 연구결과와 기존의 실험 데이터와도 비교 되었다. 그리고 메탄의 유동경계에 주는 파이프의 경사각도의 영향은 매우 큼을 알 수 있었다.
        4,000원
        11.
        2005.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 1993년부터 2003년 동안 겨울철 제주도 지방에 눈이 내린 경우를 대상으로 대기가 해양으로부터 얻은 열교환량을 계산하여 보웬비(현열속/잠열속)와 강설간의 관계를 분석한 것이다. 대상지역은 제주도 4개 관측지점인 제주, 서귀포, 성산포, 고산이다. 적설 예측의 신뢰도를 높일 수 있는 방법을 찾기 위하여 바람과 같은 기상의 영향이 가미된 보웬비와 적설과의 관계를 해기차와 적설과의 관계와 비교해 보았다. 그 결과 신적설 시, 지역별 최저 해기차는 제주시, 서귀포, 성산포, 고산에서 각각 10.9, 12.3, 11.5, 14.3˚C였고, 그 이상의 해기차에서 신적설 확률은 각각 26, 29, 13, 23%인데 비해, 신적설시 지역별 최저 보웬비는 각각 0.59, 0.60, 0.65, 0.65였고, 그 이상의 보웬비에서 신적설 확률은 33, 70, 31, 58%로 나타나 보웬비가 해기차보다 높은 확률을 보였다. 보웬비에 의한 확률이 해기차에 의한 확률보다 높게 나타나는 이유는 해기차에 의해 형성된 강설의 조건에 바람에 의한 열교환이 강설의 조건을 강화시킨 것이 보웬비에 나타났기 때문으로 생각된다. 10년(’93~’02)간 자료를 분석한 결과 각 지역별 신적설이 10.0~0.9cm 일 때 평균 보웬비는 0.63~0.67이고 신적설이 1.0~4.9cm 일때 평균 보웬비는 0.72 이상으로 조사되어 강설시 적설량과 보웬비는 비례관계가 있음을 알 수 있었다.
        4,000원
        12.
        1982.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문은 비균일대칭성 열Flux인 수직사각 Duct내의 층류조합대류 열전달 효과를 해석하기 위하여 그 유동의 특성 지배 방정식 및 비균일 열Flux의 경계조건을 무차원화 시켜 이를 Galerkin's 방법에 의해 유한요소식으로 정식화하고 이에 대하여 R 하(a) 수 및 압력구배 변수에 대해서 Duct 내의 온도분포, 속도분포 및 Nusselt 수의 값을 계산하였고 온도분포를 열 Flux가 일정 및 없는 경우와 비교하였으며 또 닥트내의 열전달 특성을 R 하(a) 수, 응력구배변수 및 Corner에 따른 변호경향을 조사하였다. 그 결과 1. 본 해석의 경계벽 온도분포 계산치와 유효자료들과의 비교에서 열 Flux가 일정 또는 없는 경우는 그 값이 일치하였다. 2. 닥트내의 온도분포와 Nusselt수의 값은 R 하(a) 수 및 압력구배 변수에 비례하여 증감하였다. 3. Nusselt수는 Corner에서 유속지연에 의한 온도분포의 특성 때문에 그 값이 감소하였으며 최대치는 0.7부근이었다
        4,000원
        13.
        2017.09 KCI 등재 서비스 종료(열람 제한)
        In this study, we analyze changes in soil heat flux and air temperature in August (summer) and January (winter) according to net radiation, at a mud flat in Hampyeong Bay. Net radiation was observed as -84.2~696.2 W/m2 in August and -79.4~352.5 W/m2 in January. Soil heat flux was observed as -80.7~139.5 Wm-2 in August and -49.09~137 W/m2 in January. Air temperature was observed as 24.2~32.9˚C in August and -1.5~11.1˚C in January. The rate of soil heat flux for net radiation (HG/RN) was 0.17 in August and 0.34 in January. Because the seasonal fluctuation in net radiation was bigger than the soil heat flux, net radiation in August was bigger than in January. We estimated a linear regression function to analyze variations in soil heat flux and air temperature by net radiation. The linear regression function and coefficient of determination for the soil heat flux by net radiation was y=0.19x-7.94, 0.51 in August, and y=0.39x-11.69, 0.81 in January. The time lag of the soil heat flux by net radiation was estimated to be within ten minutes in August 2012 and January 2013. The time lag of air temperature by net radiation was estimated at 160 minutes in August, and 190 minutes in January.
        14.
        2014.02 서비스 종료(열람 제한)
        경주 양동마을은 안동 하회마을과 함께 2010년 한국의 역사마을로 세계문화유산으로 등재되었다. 양동마을을 이루고 있는 가옥의 대부분은 불에 취약한 목재 및 초가가옥으로 구성되어있다. 특히 산림과 인접해 있어 산불로부터 화재위험성에 노출되어 있다. 이에 본 연구에서는 산불재해로 인한 양동마을 가옥들의 화재 위험성에 대해 Heat Flux 영향 평가를 실시하였다. 또한 각 가옥의 재질을 이루고 있는 물질의 착화위험성 평가를 함께 실시하였다. GIS 래지스터 분석을 통하여 양동마을의 가옥위치정보와 가옥의 재질에 대한 정보처리 실시와 산불로부터 발생되는 Heat Flux 수치해석을 통해 산림으로부터 인접한 가옥별 산불로부터 화재발생 위험 가옥들에 대한 위험지도를 구축하였다. 그 결과, 양동마을 가옥 중 산불로부터 직접적인 화재위험성에 노출된 가옥이 약 10%에 이르렀고 가옥간의 2차 화재 전파로 피해가 예측되는 가옥이 전체 가옥의 5%에 해당되었다. 이에 산불로부터 화재에 취약한 가옥들에 대해 주변 산림연료 제거 및 이격 공간 확보, 수막시설 설치 등의 산불예방 및 진화를 위한 방법이 강구되어야 할 것으로 판단된다.
        15.
        2009.01 KCI 등재 서비스 종료(열람 제한)
        Based on the monthly weather report of Korea Meteorological Administration (KMA) and daily sea surface temperature (SST) data from National Fisheries Research and Development Institute (NFRDI) in 2006, heat budget was estimated at Gampo in the eastern coast of Korea, the region occuring the cold water known as upwelling in summer. Net heat flux was transported from the air to the sea surface during February to November, and it amounts to 345 Wm-2 in monthly mean value. During December to January, the transfer of net heat flux was conversed from the sea surface to the air with -56 Wm-2 in minimum of monthly mean value in January. Long wave radiation was ranged from 6 Wm-2 to 106 Wm-2. Sensible heat was varied from -36 Wm-2 (June) to 61 Wm-2 (February) and showed negative values from April to August. Latent heat showed 20 Wm-2 (July) with its minimum in July and 49 Wm-2 with its maximum in March in monthly mean value. The annual mean of net heat flux is 129 Wm-2, giving an annual heat surplus of 22 Wm-2. Thus, during summer, the upwelled cold water at Gampo, appears to compensate the heat gain. However the ways in which these compensations are accomplished remains to be clarified.
        16.
        2006.07 KCI 등재 서비스 종료(열람 제한)
        Based on the monthly weather report of Korea Meteorological Administration (KMA) and daily sea surface temperature (SST) data from National Fisheries Research and Development Institute (NFRDI) (1995-2004), mean heat fluxes were estimated at the port of Yeosu. Net heat flux was transported from the air to the sea surface during February to September, and it amounts to 205 Wm-2 in daily average value in May. During October to January, the transfer of net heat flux was conversed from the sea surface to the air with -70 Wm-2 in minimum of daily average value in December. Short wave radiation was ranged from 167 Wm-2 in December to 300 Wm-2 in April. Long wave radiation (Sensible heat) was ranged from 27 (-14) Wm-2 in July to 90 (79) Wm-2 in December. Latent heat showed 42 Wm-2 with its minimum in July and 104 Wm-2 with its maximum in October in daily average value.
        17.
        2000.04 KCI 등재 서비스 종료(열람 제한)
        The purpose of the present study is to develope the estimation scheme for sensible heat flux by semi-empirical approach using routine meteorological data such as solar radiation and air temperature. To compare observed sensible heat flux with estimated sensible heat flux, the sensible heat fluxes were measured by three dimensional sonic anemometer-thermometer. The field observation was performed during 1 year from December 1, 1995 to November 30, 1996 on a rice paddy field in Chunchon basin. The heat fluxes were measured at a heights of 5m and mean meteorological variables were obtained at two levels, 2.5m(or 1.5m) and 10m. Since condition of rice paddy field such as, wetness of the field, roughness length, vary widely, we devided annual data to 5 periods. Comparing with two sensible heat fluxes, the results showed that the correlation coefficients were more than 0.86. Thus, we can conclude that the estimation method of sensible heat fluxes using routine meteorological data is practical and reliable enough.
        20.
        1998.10 KCI 등재 서비스 종료(열람 제한)
        A Jump model was evaluated for the calculation of hourly mixing height and mean potential temperature within the height. The Jump model was modified for estimation of downward heat fluxes by mechanical convections and surface heat fluxes. The surface heat fluxes were estimated from routine weather data such as solar radiation and air temperature. Total of 8 upper-air data observed at 0000UTC and 0600UTC in Osan station during April 23 to 26, 1996 were analyzed, and compared to the model results in detail. The calculated mixing heights and potential temperatures within the height were comparable to the observations, but some differences were showed. The calculated mixing heights were generally higher than observations. And, when variations of wind directions were large, the large difference of potential temperature was occurred. From the results, it was important to note that vertical motions and advections of air masses would affect to the growth of the mixing height.
        1 2