검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 16

        2.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The presence of dyes in water is the most popular problem recently, so the current study was directed towards the synthesis of an effective material consisting of NiO and MWCNTs. The NiO/F-MWCNTs nanocomposite was synthesized using a simple hydrothermal method after functionalization of MWCNTs using sulfuric acid and nitric acid and utilized as an efficient surface to adsorption of malachite green dye from polluted water. The nanocomposite sample was characterized using several techniques are X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA), Field emission scanning electron microscopy (FESEM), High- resolution transmission electron microscopy (HRTEM), Brunauer–Emmett–Teller (BET) surface area analysis, Barrett-Joyner-Halenda (BJH) analysis and Energy dispersive X-ray (EDX). The analytical results showed that the prepared nanocomposite is of good crystalline nature with a particle size of 25.43 nm. A significant specific surface area was 412.08 m2/ g which indicates the effective impact of the nanocomposite in the adsorption of malachite green (MG) dye. On the other hand, the effect of adsorbent dose, temperature, acidic function and contact time on the adsorption efficiency of dye was studied. The kinetics of dye adsorption were also investigated employing two kinetic models, pseudo-first-order model and pseudo-second-order model. Finally, the thermodynamic functions were determined to identify the type of the reaction and the spontaneity of the process.
        4,300원
        3.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        For solving phase separation of nanoparticles and graphene oxide (GO) in the application process, MgWO4– GO nanocomposites were successfully synthesized using three different dispersants via a facile solvothermal-assisted in situ synthesis method. The structure and morphology of the prepared samples were characterized by X-ray diffraction, Scanning electron microscopy, Transmission electron microscopy, Fourier transform infrared and Raman techniques. The experimental results show that MgWO4 nanoparticles are tightly anchored on the surfaces of GO sheets and the agglomeration of MgWO4 nanoparticles is significantly weakened. Additionally, MgWO4– GO nanocomposites are more stable than self-assembly MgWO4/ GO, which there is no separation of MgWO4 nanoparticles and GO sheets by ultrasound after 10 min. The catalytic results show that, compared with bare MgWO4, MgWO4– GO nanocomposites present better catalytic activities on the thermal decomposition of cyclotetramethylenete tranitramine (HMX), cyclotrimethylene trinitramine (RDX) and ammonium perchlorate (AP). The enhanced catalytic activity is mainly attributed to the synergistic effect of MgWO4 nanoparticles and GO. MgWO4– GO prepared using urea as the dispersant has the smallest diameter and possesses the best catalytic action among the three MgWO4– GO nanocomposites, which make the decomposition temperature of HMX, RDX and AP reduce by 10.71, 11.09 and 66.6 °C, respectively, and the apparent activation energy of RDX decrease by 68.6 kJ mol−1.
        4,000원
        4.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Core-shell structured nanoparticles are garnering attention because these nanoparticles are expected to have a wide range of applications. The objective of the present study is to improve the coating efficiency of gold shell formed on the surface of silica nanoparticles for SiO2@Au core-shell structure. For the efficient coating of gold shell, we attempt an in-situ synthesis method such that the nuclei of the gold nanoparticles are generated and grown on the surface of silica nanoparticles. This method can effectively form a gold shell as compared to the conventional method of attaching gold nanoparticles to silica particles. It is considered possible to form a dense gold shell because the problems caused by electrostatic repulsion between the gold nanoparticles in the conventional method are eliminated.
        4,000원
        5.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        ZIFs (Zeolitic imdazolate frameworks)은 높은 화학적⋅열적 안정성, 높은 비표면적과 조절 가능한 기공구조로 최근 분리막 소재로 큰 관심을 받고 있다. 본 연구에서는 두 가지 종류의 다공성 지지체(α-alumina 및 YSZ)를 사용하여 in situ 성장법으로 ZIF-8 분리막을 합성하고, H2/CO2 기체 투과 특성을 조사하였다. 결함 없는 ZIF-8층을 합성하는데 있어, 기공이 작은 YSZ 지지체는 α-alumina 지지체 보다 더 적은 시간이 요구되었다. 합성시간이 3 h인 경우, α-alumina 및 YSZ 지지체 위에 형성된 ZIF-8 분리막은 약 10 정도의 H2/CO2 선택도를 보였다.
        4,000원
        6.
        2015.11 구독 인증기관·개인회원 무료
        MOF는 큰 비표면적과 조절 가능한 기공구조로 요즘 분리막 소재로 큰 관심을 받고 있다. ZIF-8은 MOF의 일종으로 높은 화학적 열적 안정성으로 최근 많은 연구가 진행되고 있다. ZIF-8 나노기공의 다공성 물질로 Zn이온이 2-메틸이미다졸로 연결되어 있는 유-무기 하이브리드 구조를 가진다. 본 연구에서는 디스크 모양의 α–알루미나 지지체 위에 in situ 방법으로 잘 상호 성장한 ZIF-8 분리막을 합성했다. In situ 방법은 오토클레이브 내에 지지체와 전구체 용액을 넣고 용매열 합성법으로 막을 합성하는 방법이다. 합성시간을 조절하여 막의 두께를 조절했고, 두께 변화에 따른 H2/CO2 기체 투과 특성을 조사했다. 합성된 ZIF-8 분리막은 XRD와 SEM를 통해 결정 및 표면, 두께 분석했다.
        7.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, poly(amic acid) was prepared via a polycondensation reaction of 3,3'-dihydroxybenzidine and pyromellitic dianhydride in an N-methyl-2-pyrrolidone solution; reduced graphene oxide/polybenzoxazole (r-GO/PBO) composite films, which significantly increased the electrical conductivity, were successfully fabricated. GO was prepared from graphite using Brodie's method. The GO was used as nanofillers for the preparation of r-GO/PBO composites through an in situ polymerization. The addition of 50 wt% GO led to a significant increase in the electrical conductivity of the composite films by more than sixteen orders of magnitude compared with that of pure PBO films as a result of the electrical percolation networks in the r-GO during the thermal treatment at various temperatures within the films.
        3,000원
        8.
        2012.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, reduced graphene oxide/polyimide (r-GO/PI) composite films, which showed significant enhancement in their electrical conductivity, were successfully fabricated. GO was prepared from graphite using a modified Hummers method. The GO was used as a nanofiller material for the preparation of r-GO/PI composites by in-situ polymerization. An addition of 20 wt% of GO led to a significant decrease in the volume resistivity of composite films by less than nine orders of magnitude compared to that of pure PI films due to the electrical percolation networks of reduced GO created during imidization within the films. A tensile test indicated that the Young's modulus of the r-GO/PI composite film containing 20 wt% GO increased drastically from 2.3 GPa to 4.4 GPa, which was an improvement of approximately 84% compared to that of pure PI film. In addition, the corresponding tensile strength was found to have decreased only by 12%, from 113 MPa to 99 MPa.
        4,000원
        9.
        2008.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The acrylic coating emulsions were prepared by the emulsion polymerization to protect the surface of steel plate from the corrosion chemicals like acid, base and salt water. MMA(methyl methacrylate), styrene, BA(butyl acrylate), and 2-HEMA(2-hydroxyethyl methacrylate) were used as monomer. KPS(potassium persulfate) and SBS(sodium bisulfite) as redox initiator and SDBS(sodium dodecylbenzene sulfonate) as emulsifier were used on the emulsion polymerization reaction. The most stable in-situ coating was obtained when 10% of MMA was added. Both particle size and quantity in emulsion were decreased as increasing the mount of SDBS. the most stable prepared coating emulsion with polyisocyanate crosslinker showed very high anticorrosion properties on the coated steel layer to salt water, whereas no significant improvement of anticorrosion property to acdic and basic condition it showed.
        4,000원
        10.
        2006.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum nitride (AlN) nanopowders with low degree of agglomeration and uniform particle size were synthesized by carbothermal reduction of alumina and subsequent direct nitridization. Boehmite powder was homogeneously admixed with carbon black nanopowders by ball milling. The powder mixture was treated under ammonia atmosphere to synthesize AlN powder at lour temperature. The effect of process variables such as boehmite/carbon black powder ratio, reaction temperature and reaction time on the synthesis of AlN nanopowder was investigated.
        4,000원
        13.
        2003.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nano-sized was in situ synthesized in copper matrix through self-propagating high temperature synthesis (SHS) with high-energy ball milled Ti-B-Cu elemental mixtures as powder precursors. The size of particles in the product of SHS reaction decreases with time of preliminary mechanical treatment ranging from 1 in untreated mixture to 0.1 in mixtures milled for 3 min. Subsequent mechanical treatment of the product of SHS reaction allowed the particles to be reduced down to 30-50 nm. Microstructural change of -Cu nanocomposite during spark plasma sintering (SPS) was also investigated. Under simultaneous action of pressure, temperature and electric current, titanium diboride nanoparticles distributed in copper matrix move, agglomerate and form a interpenetrating phase composite with a fine-grained skeleton.
        4,000원
        15.
        1998.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        MoSi2에 W분말을 첨가하여 MoSi2/W 복합재료를 1600˚C에서 3시간 동안 유지하면서 30MPa의 조건하에서 고온진공 가압기를 이용하여 제조하였으며, 텅스텐 분말의 첨가량이 (Mo)Si2의 미세조직과 기계적 성질에 미치는 영향을 조사하였다. 텅스텐은 몰리브덴과 치환하면서 고용체 합금을 이루었으며, 입자의 크기는 텅스텐 분말의 첨가량이 증가할수록 감소하였다. 비커스경도는 텅스텐 분말의 첨가량이 증가할수록 향상되었으나, 반면에 압흔파단 강도는 오히려 감소되었다. 10%정도의 텅스텐 분말을 첨가하였을 때, 압흔파단 강도가 4.5MPa√m로서 순수 MoSi2의 2.7MPa√m에 비하여 향상되었음을 알 수 있었다.
        4,000원
        16.
        1998.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In-Sit반응소결에의해 Si과 AI금속분말을 이용하여 Si3N4-AIN 복합세라믹스를 합성하였다. 합성된 Si3N4-AIN복합세라믹스의 미세조직과 결정구조를 해석하기 위해, OM, TEM, XRD및 EDX를 이용하였으며, Si3N4-AIN -20wt.%AIN복합세라믹스에서 Si의 질화율은 97%로 가장 높았다. Si3N4-AIN 복합세라믹스에서 Si의 질화율은 AI첨가량 증가에 따라 감소하였다. 대부분의 AI입자들은 다결정 AI입자들은 다결정 AIN(4-H구조)로 완전질화되었으며, 따라서 잔류 AI상은 반응소결체내에서 관찰되지 않았다. Si3N4의 결정구조는 α와 β구조가 혼재된 상태이며, 잔류 Si입자내에서는 미소균열 및 전위가 관찰되었다. AI/Si3N4와 Si3N4 두계면에서 이들은 거친 형상을 보이지만, 계면반응상은 관찰되지 않았다.
        4,000원