The purpose of this study was to comprehend the procurement system of iron materials and the production process of ironwork in royal tombs constructions in the later Joseon period. For this purpose, sixteen Sanneung-uigwes were analyzed. The following conclusions have been reached through the study. First, it was procuring five types of iron materials in constructions of royal tombs. Sincheol had been supplied up to the mid- 18th century. On the other hand, the amount of jeongcheol was increased rapidly. Because of the procurement system of initial tools was changed from bokjeong(a kind of tribute) to self-production in the Noyaso. Second, the government stockpiles were utilized as much as possible than bokjeong to manage the limited construction period and sudden construction start. Third, before moving the site of tombs, the melting furnace was installed in the Gungisi(armament factory). The amount of the melting furnace was increased from 5 to 8 since producing the initial tools in the Noyaso. Fourth, six kinds of master artisans were worked in the field of producing ironwork. Metal worker was assigned to one person per melting furnace. Fifth, the quality of final iron materials was controlled by use. Since the 19th century, it had been produced enhanced ironwork.
Currently, there are two main issues regarding the development of core technologies in the automotive industry: the development of environmentally friendly vehicles and securing a high level of safety in the event of an accident. As part of the efforts to address these issues, research into alternative materials and new car body manufacturing and assembly technologies is necessary, and this has been carried out mainly by the automotive industries. Large press molds for producing car body parts are made of cast iron. With the increase of automobile production and various changes of design, the press forming process of car body parts has become more difficult. In the case of large press molds, high hardness and abrasive resistance are needed. To overcome these problems, we attempted to develop a combined heat treatment process consisting of local laser heat treatment followed by plasma nitriding, and evaluated the characteristics of the proposed heat treatment method. From the results of the experiments, it has been shown that the maximum surface hardness is 864 Hv by the laser heat treatment, 953 Hv by the plasma nitriding, and 1,094 Hv by the combined heat treatment. It is anticipated that the suggested combined heat treatment can be used to evaluate the durability of press mold.
Recently, metal molding has become essential not only for automobile parts, but also mass production, and has greatly influenced production costs as well as the quality of products. Its surface has been treated by carburizing, nitriding and induction hardening, but these existing treatments cause considerable deformation and increase the expense of postprocessing after treatment; furthermore, these treatments cannot be easily applied to parts that requiring the hardening of only a certain section. This is because the treatment cannot heat the material homogeneously, nor can it heat all of it. Laser surface treatment was developed to overcome these disadvantages, and, when the laser beam is irradiated on the surface and laser speed is appropriate, the laser focal position is rapidly heated and the thermal energy of surface penetrates the material after irradiation, finally imbuing it with a new mechanical characteristic by the process of self-quenching. This research estimates the material characteristic after efficient and functional surface treatment using HPDL, which is more efficient than the existing CW Nd:YAG laser heat source. To estimate this, microstructural changes and hardness characteristics of three parts (the surface treatment part, heat affect zone, and parental material) are observed with the change of laser beam speed and surface temperature. Moreover, the depth of the hardened area is observed with the change of the laser beam speed and temperature.
Since the 17th century, the society of Joseon dynasty belongs to a period of rapid transition in many fields. As the building is a result to be produced on the basis of a society and economy, the general transition in a society is to be reflected into a process of building construction. Especially, a study on the material supply system of economic base in a process of building construction is one of very important factors in an understanding or estimate of a building. On the premise, this paper is to examine the supply system of iron materials and the tools in the construction of the government managed buildings in the late of Joseon dynasty on a viewpoint of productivity. Construction reports and other documents in those days are examined for the study. Following conclusions have been reached through the study. 1) The general supply method of iron materials for a large-scale government construction was based on 'byulgong', that is, a kind of tribute. 2) Various methods were selected in the supply method of iron materials for government use in the late of Joseon dynasty. The priority order of choice in its government policy was put on an easiness of amount security, on a minimum of expenditure, and on an efficiency of construction execution. 3) The manufacturing technique of weaponry was used in the production method of iron materials and the tools for government use. The cooperation of the official, the army, and the merchant had improved the manufacturing technique of building construction.
The kinetics of sintering of Co-Fe materials was studied. The main objective was to establish the effects of iron content and sintering parameters on the microstructure and phase composition of the as-sintered material. Specimens containing from 3 to 25 wt.% iron were sintered in a dilatometer for one hour at 900, 1000 and in either hydrogen or nitrogen atmosphere. The length of specimens during the heating, hold at temperature and cooling steps were monitored to establish the sample's shrinkage. Microstructural observations were carried out on polished and etched transverse sections which were also subjected to the X-ray phase analysis.
An apparatus measuring changes of various forces directly and continuously was developed by a way of direct touch between powders and transmitting force component, which can be used to study forces state of powders during warm compaction. Using the apparatus, warm compaction processes of iron-based powder materials containing different lubricants at different temperatures were studied. Results show that densification of the iron-based powder materials can be divided into four stages, in which powder movement changes from robustness to weakness, while its degree of plastic deformation changes from weakness to robustness.
Cellular metals based on Iron have been intensively investigated during the last two decades. Because of the significant decreasing of the structural density of Iron based cellular structures, numerous technologies have been developed for their manufacturing. Besides the tremendous weight reduction a combination with other properties like energy and noise absorption, heat insulation and mechanical damping can be achieved. This contribution will give an overview about the latest state in Iron based cellular materials, including technologies in manufacturing, properties and potential applications.
다이아몬드와는 달리 CBN은 철족 재료 연삭시 화학적 마모가 거의 없다. 이러한 장점으로 인해 CBN휠이 철강 재료 연삭에 널리 사용되고 잇는 것이다. 그러나 CBN 휠의 성능은 CBN을 붙잡고 있는 결합제에 크게 의존한다. 오늘날 널리 사용되는 결합제인 주석 청동 합금은 내마모성에 한계가 있다. 주석 청동 합금의 내마모성을 증대시키기 위해 Co를 첨가하였다. 이러한 기지합금에 젖음성을 향사시키기위해 Co코팅 CBN을 사용하였다. 기지합금에 20%co를 첨가한 것이 입계에서 연속적인 δ상생성, 취성 증가에 따라 자생작용이 활발하였다. 가장 높은 연삭비를 나타낸 것은 Cu-15wt%Sn, cu-33wt%Sn, co를 40:40:20으로 제작한 휠이었다.