We present the analysis of a planetary microlensing event OGLE-2019-BLG-0362 with a shortduration anomaly (∼0.4 days) near the peak of the light curve, which is caused by the resonant caustic. The event has a severe degeneracy with Δχ2 = 0.9 between the close and the wide binary lens models both with planet-host mass ratio q ≃ 0.007. We measure the angular Einstein radius but not the microlens parallax, and thus we perform a Bayesian analysis to estimate the physical parameters of the lens. We find that the OGLE-2019-BLG-0362L system is a super-Jovian-mass planet Mp = 3.26+0.83 −0.58 MJ orbiting an M dwarf Mh = 0.42+0.34 −0.23 M⊙ at a distance DL = 5.83+1.04 −1.55 kpc. The projected star-planet separation is a⊥ = 2.18+0.58 −0.72 AU, which indicates that the planet lies beyond the snow line of the host star.
At q = 1.81 ± 0.20 × 10-5, KMT-2018-BLG-0029Lb has the lowest planet-host mass ratio q of any microlensing planet to date by more than a factor of two. Hence, it is the first planet that probes below the apparent "pile-up" at q = 5-10 ×10-5. The event was observed by Spitzer, yielding a microlens-parallax πE measurement. Combined with a measurement of the Einstein radius θE from finite-source effects during the caustic crossings, these measurements imply masses of the host Mhost = 1.14+0.10-0.12 M⊙ and planet Mplanet = 7.59+0.75-0.69 M⊕, system distance DL = 3.38+0.22-0.26 kpc and projected separation a⊥ = 4.27+0.21-0.23 AU. The blended light, which is substantially brighter than the microlensed source, is plausibly due to the lens and could be observed at high resolution immediately.
지방산 혼합물 단분자층 LB막의 전기화학적 특성을 통하여 그 안정성을 순환전압전류법으로 조사하였다. 지방산혼합물 LB막은 ITO glass에 LB법을 사용하여 제막하였다. 전기화학적 특성은 0.01N KClO4 용액에서 3 전극 시스템으로 순환전압전류법에 의해 측정하였다. 측정범위는 연속적으로 1650 mV로 산화시키고, 초기 전위인 -1350 mV로 환원시켰다. 주사속도는 각각 50, 100, 150, 200 및 250 mV/s로 설정하였다. 그 결과 지방산혼합물 LB막은 순환전압전류곡선으로부터 산화전류로 인한 비가역 공정으로 나타났다. 지방산혼합물 LB막은 전해질농도가 0.01 N NaClO4 용액에서 확산계수(D)는 각각 7.9×10-2 cm2s-1을 얻었다.
포화지방산(C12, C14, C16, C18) 단분자층 LB막의 전기화학적 특성을 통하여 그 안정성을 순환전압전류법으로 조사하였다. 포화지방산 단분자층 LB막은 ITO glass에 LB법을 사용하여 제막하였 다. 전기화학적 특성은 0.1 N NaClO4 용액에서 3 전극 시스템으로 순환전압전류법에 의해 측정하였다. 측정범위는 연속적으로 1650 mV로 산화시키고, 초기 전위인 -1350 mV로 환원시켰다. 주사속도는 각 각 50, 100, 150, 200 및 250 mV/s로 설정하였다. 그 결과 포화지방산 LB막은 순환전압전류곡선으로 부터 산화전류로 인한 비가역공정으로 나타났다. 포화지방산 LB막의 확산계수(D)를 산출한 결과 각각 라우르산, 2.223x10-3 cm2/s, 미리스트산, 2.461x10-4 cm2/s, 팔미트산, 7.114x10-4 cm2/s 및 스테아르 산, 2.371x10-4을 얻었다.
인지질(L-α-phosphatidylethanolamine, LAPE) 단분자층 LB막의 전기화학적 특성을 통하여 그 안정성을 순환전압전류법으로 조사하였다. LAPE 단분자층 LB막은 ITO glass에 LB법을 사용하여 제막하였다. 전기화학적특성은 0.5 N, 1.0 N, 1.5 N 및 2.0 N KClO₄ 용액에서 3 전극 시스템으로 순환전압전류법에 의해 측정하였다. 측정범위는 연속적으로 1650 mV로 산화시키고, 초기 전위인 -1350 mV로 환원시켰다. 주사속도는 각각 50, 100, 150, 200 및 250 mV/s로 설정하였다. 그 결과 LAPE LB 막은 순환전압전류곡선으로부터 산화전류로 인한 비가역공정으로 나타났다. LAPE LB막은 전해질농도가 0.01 N, 0.05 N. 0.10 N, 0.15 N 과 0.20 N KClO4 용액에서 확산계수(D)는 각각 195, 15.9, 5.75, 1.38 및 0.754 cm²s-¹×10-9을 얻었다.
순환전압전류법에 의한 인지질(sphingomyelin, SP)과 polyamic acid(PAA) 혼합물의 농도(몰비 1:1, 2:1 및 3:1)를 변화시켜 혼합단분자 LB막에 대한 전기화학적 특성을 조사하였다. SP과 PAA 혼합물의 단분자 LB막은 ITO glass에 LB법을 사용하여 제막하였다. 전기화학적 특성은 KClO₄ 용액에서 3 전극 시스템으로 측정하였다. 측정 범위는 연속적으로 1650 mV로 산화시키고, 초기 전위인 -1350 mV로 환원시켰다. 주사속도는 각각 50∼250 mV/s로 설정하였다. 그 결과 SP와 PAA 혼합물의 LB막은 순환전압전류도표로부터 환원전류로 인한 비가역공정으로 나타났다. 혼합물 LB막의 혼합(SP:PAA) 몰비가 1:1, 2:1 및 3:1에서 확산계수(D)는 각각 2.670×10-5, 3.562×10-5 및 1.005×10-5 cm²s-¹을 얻었다.
우리는 순환전압전류법에 의한 인지질(sphingomyelin)과 polyamic acid 혼합물의 단분자 LB막에 대한 전기화학적 특성을 조사하였다. Sphingomyelin과 polyamic acid 혼합물의 단분자 LB막은 ITO glass에 LB법을 사용하여 제막하였다. 전기화학적 특성은 KClO4 용액에서 3 전극 시스템으로 측정하였다. 측정 범위는 연속적으로 1650 mV로 산화시키고, 초기 전위인 -1350 mV로 환원시켰다. 주사속도는 각각 50, 100, 150, 200 및 250 mV/s로 설정하였다. 그 결과 sphingomyelin과 polyamic acid 혼합물의 LB막은 순환전압전류도표로부터 환원전류로 인한 비가역공정으로 나타났다. Sphingomyelin과 polyamic acid 혼합물 LB막에서 전해질농도가 0.1N과 0.2N에서 확산계수(D)는 각각 2.67cm2s-1×105과 5.23cm2s-1×106을 얻었다.
전 세계적으로 기후변화에 대응하기 위한 노력이 본격화되는 가운데, 그동안 관심이 적었던 항만으로부터의 탄소배출량이 상당량에 이르고 이의 억제를 위한 노력이 LA/LB(Los Angeles/Long Beach)항만을 중심으로 선진항만에서 전개되고 있다. 우리나라는 최근 Green Port 전략의 일환으로 부산항에서 저탄소 항만운영정책이 강화되고 있다. 저탄소 항만운영은 단기적으로 항만비용을 증가시켜 가격경쟁력을 약화시킨다. 따라서 부산항의 경우 저탄소 항만운영으로 인한 비용을 항만이용자에게 부담시키지 않고 항만당국이 저탄소를 위한 정책을 시행하고 비용을 부담하고 있다. 반면 LA/LB의 경우 저탄소 항만운영의 비용을 선주 및 화주 등 항만이용자에게 부담시키고 있다. 본 연구에서는 부산항과 LA/LB항의 저탄소 항만운영에 관한 비교분석을 통해 부산항의 지속가능한 항만운영의 시사점을 제시하였다.
We investigated the electrochemical properties for Langmuir-Blodgett(LB) films mixed with l-bromotetradecane(Cl4), l-bromohexadecane(Cl6), and l-bromooctadecane(Cl8). The alkyl bromides mixture was deposited by using the Langmuir-Blodgett method on the ITO glass. The electrochemical properties measured by using cyclic voltammetry with a three-electrode system(an Ag/AgCl reference electrode, a platinum wire counter electrode and LB film-coated ITO working electrode) at various concentrations(0.5, 1.0, 1.5 and 2.0 N) of NaClO4 solution. A measuring range was reduced from initial potential to -1350 m V, continuously oxidized to 1650 mV. The scan rate was 100 mV/s. As a result, LB films of Cl4, Cl6, and Cl8 mixture monolayers appeared irreversible process caused by only the oxidation current from the cyclic voltammogram. The diffusivity(D) effect of LB films decreased with increasing of alkyl bromides amount.
We carried out this experiment to observe an electrochemical properties for LB films of alkyl compounds by the cyclic voltammetry. Alkyl bromides was deposited by using the Langmuir- Blodgett method on the ITO glass. We measured to an electrochemical measurement by using cyclic voltammetry with a three-electrode system(an Ag/AgCl reference electrode, a platinum wire counter electrode and LB film-coated ITO working electrode) in 0.5, 1.0, 1.5 and 2.0 N NaClO4 solution. A measuring range was reduced from initial potential to -1350 mV, continuously oxidized to 1650 mV. The scan rate were 100 mV/s. As a result, an electrochemical properties of the LB films of alkyl bromides appeared irreversible process caused by only the oxidation current from the cyclic voltammogram. The diffusivity(D) effect of LB films decreased with increasing of alkyl compounds amount.
We investigated the electrochemical properties for Langmuir-Blodgett (LB) films mixed with 4-octyl-4'-(5-carboxylpentamethyleneoxy)azobenzene (denoted as 8A5H) and phospholipid(L-α-dimyristoylphosphatidylcholine, denoted as DMPC). LB films of 8A5H monolayer and 8A5H-DMPC were deposited by using the Langmuir-Blodgett method on the indium tin oxide(ITO) glass. The electrochemical properties measured by using cyclic voltammetry with a threeelectrode system, an Ag/AgCl reference electrode, a platinum wire counter electrode and LB film-coated ITO working electrode at various concentrations(0.1, 0.5, and 1.0mol/L) of NaClO4 solution. A measuring range was reduced from initial potential to -1350mV, continuously oxidized to 1650mV and measured to the initial point. The scan rates were 50, 100, 150 and 200mV/s, respectively. As a result, LB films of 8A5H monolayer appeared irreversible process caused by only the oxidation current from the cyclic voltammogram and LB films of 8A5H-DMPC mixture were found to be caused by a reversible oxidation-reduction process.
Electron transfer through an Langmuir-Blodgett(LB) monolayer film sandwiched between metal electrodes. We used an eicosanoic acid material and the material was very famous as a thin film insulating material. Eicosanoic acid monolayer was deposited by Langmuir-Blodgett(LB) technique and a subphase was a CdCl2 solution as a 2×10-4 mol/L. Also we used a bottom electrode as an Al/Al2O3 and a top electrode as a Al and Ti/Al. Here, the Al2O3 on the bottom electrode was deposited by thermal evaporation method. The Al2O3 layer was acted on a tunneling barrier and insulating layer in tunnel diode. It was found that the proper transfer surface pressure for film deposition was 25 mN/m and the limiting area per molecule was about 24 a2/molecule. When the positive and negative bias applied to the molecular device, the behavior shows that a tunnel switching characteristics. This result were analyzed regarding various mechanisms.
We studied electrochemical characteristics of Langmuir-Blodgett(LB) films by using cyclic voltammetry with a three-electrode system. An Ag/AgCl as a reference electrode, a platinum wire as a counter electrode and LB film-coated indium tin oxide(ITO) as a working electrode were used to study electrochemical characteristics at a various concentration of NaClO4 solution. LB films were reduced from initial potential to -1350 mV, continuously oxidized to l650mV and returned to the initial point. The scan rate was l00mV/s. The monolayer surface morphology of the LB film have been measured by Atomic Force Microscope(AFM). As a result, We comfirmed that the microscopic properties of LB film by AFM showed the good orientation of momolayer molecules and the thickness of monolayer was 3.5-4.lnm. The cyclic voltammograms(CV) of the ITO-coated glass showed the peak potentials for the reduction-oxidation reation. LB films of 4-octyl-4'-(5-carboxypentamethyleneoxy) azobenzene(8A5H) / L-α-phosphayidyl choline, dilauroyl(DLPC) seemed to be irreversible process caused by only the oxidation current from the cyclic voltammogram. The current of oxidatation increased at cyclic voltammogram by increasing 8A5H density in LB films. The diffusivity(D) of LB films increased with increasing of a 8A5H amount and was inversely proportional to the concentration of NaClO4 solution.
We carried out this experiment to observe electrochemical properties for LB films of phospholipid(Dilauroyl-L-α-Phosphayidylcholine) and 4-octyl-4'-(5-carboxypentamethylene-oxy)azobenzene mixture by the cyclic voltammetry. LB films of 8A5H and 8A5H-DLPC(1:1, 2:1) were deposited by using the Langmuir-Blodgett method on the ITO glass. We determined electrochemical measurement by using cyclic voltammetry with a three-electrode system, An Ag/AgCl reference elect rode, a platinum wire counter electrode and LB film-coated ITO working electrode measured in 0.1, 0.5, and 1.0 mol/L NaClO4 solution. A measuring range was reduced from initial potential to -1350 mV, continuously oxidized to 1650 mV and measured to the initial point. The scan rate were 50, 100, 150 and 200 mV/s. As a result, LB films of 8A5H 8A5H-DLPC appeared irreversible process caused by only the oxidation current from the cyclic voltammogram.
We carried out this subject to observe photoisomerization using 1,2-dioleoyl-sn- glycero-3-phosphocholine(DOPC) mixed with fatty acid containing azobenzene group which has reversible to cis-trans by light irradiation. Spreading solutions for the LB films were prepared in chloroform(5.0×10-5mol/L).We investigated the photoisomerization and property of the organic ultra thin film of fatty acid containing azobenzene was prepared on the hydrophilic ITO(idium tin oxide) glass plate by LB method. As a result, the absorption spectra of 8A5H and DOPC of mixture LB films was induced to photoisomerization by alternating irradiation of ultraviolet and visible light, because the condensation of pure azobenzene monolayers was loosened by the introduction of phospholipid into the monolayers, and the molecular high aggregation in pure azobenzene monolayers is also weakened by the introduction of phospholipid. We found that it was reversibly induced to cis-trans photoisomerization in several solvents and mixture LB films.
We have investgated UV-Vis absorbance to observe the photoisomerization using the mixture solutions in chloroform and LB monolayers mixed with DLPE and 8A5H containing azobenzene which showed reversible cis-trans photoisomerization irradiated by alternate lights. We have found that the absorbance spectrums of the mixture solutions and LB monolayers were reversibly induced to cis-trans photoisomerization irradiated by alternate lights. In addition, the absorbance of both solution and LB monolayer mixed with 8A5H and DLPE were reversibly by alternate temperatures. As a results, the 1:1(by volume) mixture ratio of 8A5H and DLPE was more flexible and reversible cis-trans photoisomerization than the others.
Ultra-thin films of poly[2-[4-(9-(10-phenyl)anthracenyl)phenoxy)hexyloxy]]-1,4-phenylenevinyleylene(PAHPV) were prepare-d on the hydrophilic ITO substrate by Langmuir-Blodgett(LB) technique. λmax in the photoluminescence spectrum of these films was 458nm at the excitation wavelength of 365nm before thermal treatment, which comes from diphenylanthracene side chain of PAHPV. It was also confirmed with UV-Vis spectrometer that ultra-thin LB films of PAHPV precursor polymer were prepared well. After thermal treatment for conjugation of PAHPV precursor polymer, λmax in the photoluminescence spectrum of these films changed to 365nm, which means that the conjugation of these PAHPV films was completed.
It is well known that the metallo- phthalocyanine (MPcs) are sensitive to toxic gaseous molecules such as NO2 and also chemically and thermally stable, Therefore, lots of MPcs have been studied for the potential chemical sensor for NO2 gas using quartz crystal microbalance(QCM) or electrical conductivity. In this study, ultra-thin films of octa(2-ethylhexyloxy)copper-phthalocyanine were prepared by Langmuir-Blodgett method and characterized by using UV-VIS absortion spectroscopy and ellipsometry. Transfer condition, and characterization of LB films were investigated and preliminary results of current-voltage(I-V) characteristics of these films exposed to NO2 gas as a function of film thickness and temperature were discussed.