검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 121

        1.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study develops a model to determine the input rate of the chemical for coagulation and flocculation process (i.e. coagulant) at industrial water treatment plant, based on real-world data. To detect outliers among the collected data, a two-phase algorithm with standardization transformation and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is applied. In addition, both of the missing data and outliers are revised with linear interpolation. To determine the coagulant rate, various kinds of machine learning models are tested as well as linear regression. Among them, the random forest model with min-max scaled data provides the best performance, whose MSE, MAPE, R2 and CVRMSE are 1.136, 0.111, 0.912, and 18.704, respectively. This study demonstrates the practical applicability of machine learning based chemical input decision model, which can lead to a smart management and response systems for clean and safe water treatment plant.
        4,000원
        2.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Dynamic responses of nuclear power plant structure subjected to earthquake loads should be carefully investigated for safety. Because nuclear power plant structure are usually constructed by material of reinforced concrete, the aging deterioration of R.C. have no small effect on structural behavior of nuclear power plant structure. Therefore, aging deterioration of R.C. nuclear power plant structure should be considered for exact prediction of seismic responses of the structure. In this study, a machine learning model for seismic response prediction of nuclear power plant structure was developed by considering aging deterioration. The OPR-1000 was selected as an example structure for numerical simulation. The OPR-1000 was originally designated as the Korean Standard Nuclear Power Plant (KSNP), and was re-designated as the OPR-1000 in 2005 for foreign sales. 500 artificial ground motions were generated based on site characteristics of Korea. Elastic modulus, damping ratio, poisson’s ratio and density were selected to consider material property variation due to aging deterioration. Six machine learning algorithms such as, Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Artificial Neural Networks (ANN), eXtreme Gradient Boosting (XGBoost), were used t o construct seispic response prediction model. 13 intensity measures and 4 material properties were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks present good prediction performance considering aging deterioration.
        4,000원
        3.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 돼지 간 거리(PD), 돈사 내 상대 습도(RRH), 돈사 내 이산화탄소(RCO2) 세 가지 변수를 사용하여, 네 개의 데이터 세트를 구성하고, 이를 다중 선형 회귀(MLR), 서포트 벡터 회귀(SVR) 및 랜덤 포레스트 회귀(RFR) 세 가지 모델 기계학습(ML)에 적용하여, 돈사 내 온도(RT)를 예측하고자 한다. 2022년 10월 5일부터 11월 19일까지 실험을 진행하였다. Hik-vision 2D카메라를 사용하여, 돈사 내 영상을 기록하였다. 이후 ArcMap 프로그램을 사용하여, 돈사 내 영상에서 추출한 이미지 안 돼지의 PD를 계산하였다. 축산환경관리시스템(LEMS) 센서를 사용하여, RT, RRH 및 RCO2를 측정하였다. 연구 결과 각 변수 간 상관분석 시 RT와 PD 간의 강한 양의 상관관계가 나타났다(r > 0.75). 네 가지 데이터 세트 중 데이터 세트 3을 사용한 ML 모델이 높은 정확도가 나타났으며, 세 가지 회귀 모델 중에서 RFR 모델이 가장 우수한 성능을 보였다.
        4,000원
        4.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the manufacturing industry, dispatching systems play a crucial role in enhancing production efficiency and optimizing production volume. However, in dynamic production environments, conventional static dispatching methods struggle to adapt to various environmental conditions and constraints, leading to problems such as reduced production volume, delays, and resource wastage. Therefore, there is a need for dynamic dispatching methods that can quickly adapt to changes in the environment. In this study, we aim to develop an agent-based model that considers dynamic situations through interaction between agents. Additionally, we intend to utilize the Q-learning algorithm, which possesses the characteristics of temporal difference (TD) learning, to automatically update and adapt to dynamic situations. This means that Q-learning can effectively consider dynamic environments by sensitively responding to changes in the state space and selecting optimal dispatching rules accordingly. The state space includes information such as inventory and work-in-process levels, order fulfilment status, and machine status, which are used to select the optimal dispatching rules. Furthermore, we aim to minimize total tardiness and the number of setup changes using reinforcement learning. Finally, we will develop a dynamic dispatching system using Q-learning and compare its performance with conventional static dispatching methods.
        4,000원
        5.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In recent automated manufacturing systems, compressed air-based pneumatic cylinders have been widely used for basic perpetration including picking up and moving a target object. They are relatively categorized as small machines, but many linear or rotary cylinders play an important role in discrete manufacturing systems. Therefore, sudden operation stop or interruption due to a fault occurrence in pneumatic cylinders leads to a decrease in repair costs and production and even threatens the safety of workers. In this regard, this study proposed a fault detection technique by developing a time-variant deep learning model from multivariate sensor data analysis for estimating a current health state as four levels. In addition, it aims to establish a real-time fault detection system that allows workers to immediately identify and manage the cylinder’s status in either an actual shop floor or a remote management situation. To validate and verify the performance of the proposed system, we collected multivariate sensor signals from a rotary cylinder and it was successful in detecting the health state of the pneumatic cylinder with four severity levels. Furthermore, the optimal sensor location and signal type were analyzed through statistical inferences.
        4,200원
        6.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Machine learning is widely applied to various engineering fields. In structural engineering area, machine learning is generally used to predict structural responses of building structures. The aging deterioration of reinforced concrete structure affects its structural behavior. Therefore, the aging deterioration of R.C. structure should be consider to exactly predict seismic responses of the structure. In this study, the machine learning based seismic response prediction model was developed. To this end, four machine learning algorithms were employed and prediction performance of each algorithm was compared. A 3-story coupled shear wall structure was selected as an example structure for numerical simulation. Artificial ground motions were generated based on domestic site characteristics. Elastic modulus, damping ratio and density were changed to considering concrete degradation due to chloride penetration and carbonation, etc. Various intensity measures were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks and extreme gradient boosting algorithms present good prediction performance.
        4,000원
        9.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 대학 교수학습센터에서 제공하는 학습지원 프로그램의 성과를 종합적으로 평가하기 위한 BSC(Balanced Score Card) 기반의 성과평가 모형을 개발하고 적용하는 데 있다. 문헌 연구를 통해 성과평 가의 이론적 배경을 조사하고, BSC 모형을 교육 분야에 맞게 수정하여 학습지원 프로그램에 적용 가능한 평가 체계를 설계하였다. 재무, 수요 자, 운영, 프로그램의 네 가지 관점에서 성과평가 지표를 설정하고, 이를 기반으로 대학의 다양한 학습지원 프로그램의 성과를 분석하였다. 분석 결과, 특정 프로그램들이 높은 성과를 보임을 확인하였으며, 동시에 개선 이 필요한 영역을 확인하였다. 개발된 BSC 기반 성과평가 모형은 대학 학습지원 프로그램의 다각도에서의 성과를 평가하는 데 유용하였으며, 프로그램의 강점과 개선점을 명확하게 확인할 수 있었다. 이 연구를 통 하여 대학 교수학습센터가 학습지원 프로그램의 질을 개선하고, 대학 교 육의 질적 향상에 기여하길 기대한다.
        6,100원
        10.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        작물의 스트레스 조기 진단은 농업에 있어 빠른 대응을 가능하게 해 피해를 경감시킬 수 있어 중요한 기술이다. 기존의 스트레스 진단이 가진 파괴적인 형식의 시료 채집과 양분 분석에 많은 노동력을 필요로 한다는 단점 극복을 위해 새로운 기술 개발이 필요하다. 미래에는 대단위 영상을 이용한 생육 진단 기술에 대한 수요가 높아질 것으로 예상되어 이를 이용한 연구를 진행하였다. 본 연구는 2023년 경상남도 밀양시에 위치한 국립식량과학원 실험 포장에서 수행되었으며, 무인항공기(UAV)를 이용하여 양분 결핍 처리(관행시비, 질소 결핍, 인 결핍, 칼륨 결핍, 무비)에 따른 벼의 생육을 조사했다. UAV를 이용해 생육 기간 중 총 6회에 걸쳐 포장을 촬영하였고, 영상을 기반으로 11개의 식생 지수를 산출하여 기계학습을 통해 양분 결핍을 진단하는 모델을 구축하여 평가했다. 연구 결과에 따르면, 엽록소 함량과 관련된 지수인 NDRE (Normalized Difference Red Edge)가 가장 높은 중요도를 나타내어 벼의 양분 상태를 효과적으로 진단하는 데 유용하다는 것을 확인하였다. 6개의 각 단계별로 모델을 평가하였을 때 모든 단계에서 accuracy가 0.7 이상으로 나타났다. 조기 진단을 위해 첫 촬영 날짜인 7월 5일의 자료로 모델을 만들어 다른 회차에 적용하여 모델의 성능을 평가한 결과, 5개의 모든 단계에서 0.9 이상의 accuracy를 얻었다. 종합적으로, UAV 영상 기반의 식생 지수를 활용한 양분 결핍 진단은 벼의 생육을 조기에 예측하는 데 효과적이며, 이는 정밀 농업 분야에서 시간과 노동을 절감하고 양분 관리를 개선하는 데 도움이 될 것으로 기대된다.
        4,300원
        12.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : To enhance the accuracy of predicting the compressive strength of practical concrete mixtures, this study aimed to develop a machine learning model by utilizing the most commonly employed curing age, specifically, the 28-day curing period. The training dataset consisted of concrete mixture sample data at this curing age, along with samples subjected to a total load not exceeding 2,350 kg. The objective was to train a machine learning model to create a more practical predictive model suitable for real-world applications. METHODS : Three machine learning models—random forest, gradient boosting, and AdaBoost—were selected. Subsequently, the prepared dataset was used to train the selected models. Model 1 was trained using concrete sample data from the 28th curing day, followed by a comprehensive analysis of the results. For Model 2, training was conducted using data from the 28th day of curing, focusing specifically on instances where the total load was 2,350 kg or less. The results were systematically analyzed to determine the most suitable machine learning model for predicting the compressive strength of concrete. RESULTS : The machine learning model trained on concrete sample data from the 28th day of curing with a total weight of 2,350 kg or less exhibited higher accuracy than the model trained on weight-unrestricted data from the 28th day of curing. The models were evaluated in terms of accuracy, with the gradient boosting, AdaBoost, and random forest models demonstrating high accuracy, in that order. CONCLUSIONS : Machine learning models trained using concrete mix data based on practical and real-world scenarios demonstrated a higher accuracy than models trained on impractical concrete mix data. This case illustrates the significance of not only the quantity but also the quality of the data during the machine learning training process. Excluding outliers from the data appears to result in better accuracy for machine learning models. This underscores the importance of using high-quality and practical mixed concrete data for reliable and accurate model training.
        4,000원
        13.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this study, an optimal model for compressive strength prediction was derived by learning and directly comparing several machine learning models based on the same data. METHODS : Approximately 478 pieces of concrete compressive strength data were obtained to compare the performance of the machine learning models. In addition, five machine learning models were trained based on the obtained data. The performance of the learned model was compared using three performance indicators. Finally, the performance of the model trained using additional data was reviewed. RESULTS : As a result of comparing the performance of machine learning models, the XGB(eXtra Gradient Boost) model showed the best performance. In addition, as a result of the verification based on additional data, highly reliable results can be obtained if the XGB model is used to predict the compressive strength of concrete. CONCLUSIONS : If a concrete strength prediction model is derived based on a machine learning model, a highly reliable model can be derived.
        4,000원
        14.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Construction cost estimates are important information for business feasibility analysis in the planning stage of road construction projects. The quality of current construction cost estimates are highly dependent on the expert's personal experience and skills to estimate the arithmetic average construction cost based on past cases, which makes construction cost estimates subjective and unreliable. An objective approach in construction cost estimation shall be developed with the use of machine learning. In this study, past cases of road projects were analyzed and a machine learning model was developed to produce a more accurate and time-efficient construction cost estimate in teh planning stage. METHODS : After conducting case analysis of 100 road construction, a database was constructed including the road construction's details, drawings, and completion reports. To improve the construction cost estimation, Mallow's Cp. BIC, Adjusted R methodology was applied to find the optimal variables. Consequently, a plannigs-stage road construction cost estimation model was developed by applying multiple regression analysis, regression tree, case-based inference model, and artificial neural network (ANN, DNN). RESULTS : The construction cost estimation model showed excellent prediction performance despite an insufficient amount of learning data. Ten cases were randomly selected from the data base and each developed machine learning model was applied to the selected cases to calculate for the error rate, which should be less than 30% to be considered as acceptable according to American Estimating Association. As a result of the analysis, the error rates of all developed machine learning models were found to be acceptable with values rangine from 17.3% to 26.0%. Among the developed models, the ANN model yielded the least error rate. CONCLUSIONS : The results of this study can help raise awareness of the importance of building a systematic database in the construction industry, which is disadvantageous in machine learning and artificial intelligence development. In addition, it is believed that it can provide basic data for research to determine the feasibility of construction projects that require a large budget, such as road projects.
        4,000원
        16.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Numerous factors contribute to the deterioration of reinforced concrete structures. Elevated temperatures significantly alter the composition of the concrete ingredients, consequently diminishing the concrete's strength properties. With the escalation of global CO2 levels, the carbonation of concrete structures has emerged as a critical challenge, substantially affecting concrete durability research. Assessing and predicting concrete degradation due to thermal effects and carbonation are crucial yet intricate tasks. To address this, multiple prediction models for concrete carbonation and compressive strength under thermal impact have been developed. This study employs seven machine learning algorithms—specifically, multiple linear regression, decision trees, random forest, support vector machines, k-nearest neighbors, artificial neural networks, and extreme gradient boosting algorithms—to formulate predictive models for concrete carbonation and thermal impact. Two distinct datasets, derived from reported experimental studies, were utilized for training these predictive models. Performance evaluation relied on metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analytical outcomes demonstrate that neural networks and extreme gradient boosting algorithms outshine the remaining five machine learning approaches, showcasing outstanding predictive performance for concrete carbonation and thermal effect modeling.
        4,000원
        18.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        기후변화 영향으로 이상고수온, 태풍, 홍수, 가뭄 등 재난 및 안전 관리기술은 지속적으로 고도화를 요구받고 있으며, 특히 해 수면 온도는 한반도 주변에서 발생되는 여름철 적조 발생과 동해안 냉수대 출현, 소멸 등에 영향을 신속하게 분석할 수 있는 중요한 인자 이다. 따라서, 본 연구에서는 해수면 온도 자료를 해양 이상현상 및 연구에 적극 활용되기 위해 통계적 방법과 딥러닝 알고리즘을 적용하 여 예측성능을 평가하였다. 예측에 사용된 해수면 수온자료는 흑산도 조위관측소의 2018년부터 2022년까지 자료이며, 기존 통계적 ARIMA 방법과 Long Short-Term Memory(LSTM), Gated Recurrent Unit(GRU)을 사용하였고, LSTM의 성능을 더욱 향상할 수 있는 Sequence-to-Sequence(s2s) 구조에 Attention 기법을 추가한 Attention Long Short-Term Memory (LSTM)기법을 사용하여 예측 성능 평가를 진행하 였다. 평가 결과 Attention LSTM 모델이 타 모델과 비교하여 더 좋은 성능을 보였으며, Hyper parameter 튜닝을 통해 해수면 수온 성능을 개 선할 수 있었다.
        4,000원
        19.
        2023.10 구독 인증기관·개인회원 무료
        모기는 감염병을 매개하는 종으로 전염병 확산 억제를 위해서는 개체수의 감시와 정확한 예측이 필요하다. 본 연구에서는 모기 개체수 및 기상 및 현장 자료를 활용해 모기 개체수 머신러닝 모델을 개발하였다. 모기 개체수는 디지털 모기 측정기(Digital Mosquito Monitoring System, DMS)의 2015 년~2022년의 5월~10월의 자료를 활용하였다. 기상 자료는 기온, 강수량, 풍속, 습도를 사용하였으며, 현장 조사 자료는 현장을 명목척도와 서열척도로 나누어 기록하여, 명목 척도의 경우 원핫 인코딩으 로 변환해 수치화하여 사용하였다. 분석에 사용된 머신러닝 모델은 Artificial Neural Network, Random Forest, Gradient Boosting Machine, Support Vector Machine이며 성능지표로 R2, RMSE를 사용하였다. 연구 결과, Gradient Boosting 모델이 R2 0.4, RMSE 22.45로 가장 좋은 성능을 나타냈다. 현장 조사 자료 를 분석에 활용하였을 때 R2는 증가하였고, RMSE는 감소하였다. 본 연구 결과 모기 개체수에 현장 조사 자료가 예측 정확도를 향상시킬 수 있음을 확인하였다.
        1 2 3 4 5