Despite its advantages such as safety, unnecessary pretreatment, and decontamination of waste with complex geometry, conventional ultrasonic decontamination technology has been only used to remove loose contaminants, oil and grease, not fixed contaminants due to the limitations in increasing the intensity in the high frequency range. Thus, ultrasound has been used as an auxiliary method to accelerate chemical decontamination of radioactive wastes or chemicals were added to the solution to increase the decontamination efficiency. The recently developed high-intensity focused ultrasound (HIFU) decontamination technology overcomes these limitations by combining multiple frequencies of ultrasonic waves in a specific arrangement, making it possible to remove most fixed contaminants, including radioactive micro particles less than 1 micrometer within half an hour. KEPCO NF and EnesG developed mobile HIFU decontamination equipment and successfully demonstrated the decontamination effect on various radionuclides found in nuclear power plants by treating radioactive metal waste to the level below free release criteria. The mobile HIFU decontamination equipment used in the demonstration can be operated anywhere where water is supplied, including controlled area in nuclear power plants, and is expected to be used widely for decontamination and free release of metal radioactive wastes.
To improve the shortcomings and expand the advantages of the single-roll melt drag method, which is a type of continuous strip casting method, the melt drag method with a molding belt is applied to AZ31 magnesium alloy. By attaching the forming belt to the melt drag method, the cooling condition of the thin plate is improved, making it possible to manufacture thin plates even at high roll speed of 100 m/min or more. In addition, it is very effective for continuous production of thin plates to suppress oxidation of the molten metal on the roll contact surface by selecting the protective gas. As a result of investigating the relationship between the contact time between the molten metal and the roll and the thickness of the sheet, it is possible to estimate the thickness of the sheet from the experimental conditions. The relationship between the thin plate thickness and the grain size is one in which the thinner the thin plate is, the faster the cooling rate of the thin plate is, resulting in finer grain size. The contact state between the molten metal and the roll greatly affects the grain size, and the minimum average grain size is 72 μm. The thin plate produced using this experimental equipment can be rolled, and the rolled sample has no large cracks. The tensile test results show a tensile strength of 303 MPa.
Accompanied with the industrial development, and enlarging and heightening buildings, building equipments are also enlarging. These changes are serious to the cause of structure noises. The Floating Floor System which uses the soft foam polyurethane are becoming popular in construction areas for its short construction period and well vibration proof ability, hence it is becoming wide in the marketing volume. We were able to enhance the physical characteristics of the vibration proof polyurethane mat with this study. As a result, we were also able to secure material competitiveness by meeting the requirements of customer satisfaction through enhancement in estimated material lifetime and physical characteristics.
작업 편이성을 높일 수 있는 원통형 종이포트를 일정한 크기로 생산하여 연속적 공급이 가능한 원통형 종이 포트 제조장치를 개발하고, 장치의 성능시험을 수행하였다. 원통형 종이포트 제조장치는 상토공급부, 종이 공급부, 종이 접착부, 종이포트 절단부로 구성되어 종이포트 제조를 위한 상토공급부터 종이포트 절단까지의 공정이 연속적으로 이루어지도록 하였다. 상토 함수율에 따른 적정 상토공급압력시험에서는 상토를 공급하는 진공압이 높을수록 종이포트의 경도와 가밀도가 높게 나타났으며, 수분 함수율이 높아질수록 경도와 가밀도는 증가하다가 낮아지는 경향을 나타내어 포트제조부로 상토를 공급하기 위한 적정 함수율 및 공기압은 50%~60%와 0.5 Mpa인 것으로 판단된다. 제조장치의 성능과 고형접착제에 의한 종이 접착시간을 고려하였을 때, 종이의 원통 성형이 이루어지고 가이드부와의 유착없이 연속적인 공정이 이루어질 수 있는 적정 온도는 150oC~160oC인 것으로 판단된다. 원통형 종이포트 절단칼날의 최적 절단 각도를 구명하기 위한 시험에서는 절단 속도와 작업의 안전성을 고려하여 최소 기울기인 30o에서 깨끗한 단면을 나타내는 일자칼날을 사용하는 것이 적합할 것으로 판단 된다. 원통형 종이포트 제조장치의 성능시험에서 종이포트의 길이는 설정한 길이로 균일하게 제조되었으며, 종이 접착 및 상토공급 등 준비 시간을 제외한 종이포트(직경: 40mm, 길이: 40mm) 제조 작업성능은 3300개/hr로 나타났다.
In this study, manufacturing equipments for urushiol free raw rhus verniciflua stem(RRVS) extracts are developed which do not need for drying process and high pressure device. The three layered pressure tank and heating medium oil boiler are designed which are more efficient than the conventional ones, and the safety of the tank is assured by the structural analysis software. Finally, the RRVS extracts are prepared by water extraction technique at 100℃ using the developed equipments. In the physicochemical experiments for the RRVS extracts, an allergen such as urushiol is not detected, whereas the antioxidant such as polyphenol and flavonoid are contained.
Wire rods having various sectional shape are generally used in various applications. In a 2-roll shape rolling process, step-by-step rolling operations are executed repeatedly and the rollers must be changed whenever the sectional shape of wire rod is changed. The frequent changes of the rollers and discontinuous repeated operations are cause various shortcomings such as increase of manufacturing cost and reduction in precision. We had developed a high precision automatic wire rod manufacturing system to reduce these shortcomings in the previous study. In this study, we evaluated the field application performance of the developed system in terms of straightness, thickness deviation, surface precision, tensile and hardness of the wire rod in order to verify the feasibility of the system.
Wire rods having various sectional shape are generally used directly in various applications. In the shape rolling, a couple of grooved rollers are used and the groove match the sectional shape of the wire rod. In this 2 roll system, a couple of rollers must be changed whenever the sectional shape of the wire rod is changed, and the frequent changes of roller cause rise of manufacturing cost. In this study, in order to apply a highly precise 4 roll rolling mill developed in previous studies on the shape rolling manufacturing process, the raw wire feeding equipment, 2 roll rolling mill, turks Head rolling mill, large heat treatment equipment, a steam cleaning equipment, a large winding equipment, cooling equipment, a tension adjustment equipment, designed and manufactured to the main control system. In addition, the problems corrected throughout these various equipments for manufacturing high-precision automatic rolling mill system developed by assembling more than six months and was conducted between complementary and testing process.
The electromagnetic interference(EMI) shielding sheet of grid pattern for the wireless charger has been designed by using grid pattern metal sheet, PET & DST stacking and laminating technology. For this purpose, the twisting protection and the bubbling prevention device, the automatic position adjustment controller, the visual sensors and the motor actuator for controller, the EMI shielding sheet cutting device and the main control system have been developed for manufacturing the apparatus. As the study result, the development on manufacturing the equipment and shielding sheet of the EMI shielding sheet of grid pattern for the wireless charger having the lamination productivity of 27.4m/min exceeded the target of 8m/min in this study. In addition, the magnetic induction and the applicable shielding sheet were prepared in the magnetic resonance system, all of the two wireless charging system. The power with a band of average 6.87MHz of shielding sheet was greater than the target of 30dB to 32.57dB. The available frequency with a band of average 7.95MHz the target was exceeded by a 7.00MHz.
The bio reactors with high efficiency using ejector are widely used in gas-liquid system, This is also due to the high efficiency in gas dispersion resulting in high mass transfer rate and low power requirements. Thus, the new liquid fertilizer manufacturing equipment composed with aeration tank, cycling tank and circulation pump using an ejector was developed. The aim of this study is to investigate the effect of an ejector on the liquid fertilizer manufacturing equipment and to design the optimal ejector for actual application using CFD analysis and experimental method. The results show that the suction air mass flow rate is increased, as the diameter of driving ejector nozzle is smaller and the position of nozzle is toward the exit of an ejector.
Remarkably improvements have occurred recently in the maintenance management of physical assets and productive systems, so that less wastages of energy and resources occur. The technology of maintenance is about finding and applying cost-effective ways of avoiding or overcoming performance deterioration. Maintenance is thus a vital support function in business, especially as increasingly large investments are being required in physical assets. TPM(Total Productive Maintenance) focuses on optimizing planning scheduling. Availability, performance and quality rate are other factors that affect productivity. Especially there are some losses that affect the overall equipment effectiveness(OEE). These losses lead to low values of OEE, which provides an indication of how effective the production precess is. This study explores the ways in which Korean small and medium manufacturing industries can improve OEE.
풍력에너지는 20여년 전부터 새로운 대체 연료로서 주목받기 시작하여 현재는 글로벌 비즈니스 모델로 성장하고 있다. 전 세계적 으로 풍력발전이 차지하는 비율은 전체 발전량의 30%를 차지하며, 이 비율은 지난 10여 년 간 꾸준히 증가해 왔다. 근래에 들어 일반 발전방 식들의 탄소 배출량 증가 및 온실효과로 인한 환경문제 등으로 인해 풍력발전에 대한 국제적 수요는 점차 커져가고 있다. 본 연구에서는 이러 한 풍력 발전용 부품에 대한 효율적인 운송경로를 제안하기 위해 풍력 발전용 부품의 운송 특성에 따라 그 경로를 접근성 우선 경로, 경제성 우선 경로, 편의성 우선 경로 등으로 분류하였다. 본 연구를 통해 풍력발전부품 제조업체들은 제품의 운송기간의 문제 뿐 아니라 운송경로의 효율성과 경제성까지 판단할 수 있게 되었다. 즉 지금까지 선박회사나 포워더를 통해 이루어지던 운송경로의 결정을 제조업체도 해당 운송경 로의 효율성과 경제성을 분석하고 비교할 수 있게 되었다.