This study investigates the risk reduction effect and identifies the optimal capacity of Multi-barrier Accident Coping Strategy (MACST) facilities for nuclear power plants (NPPs) under seismic hazard. The efficacy of MACST facilities in OPR1000 and APR1400 NPP systems is evaluated by utilizing the Improved Direct Quantification of Fault Tree with Monte Carlo Simulation (I-DQFM) method. The analysis encompasses a parametric study of the seismic capacity of two MACST facilities: the 1.0 MW large-capacity mobile generator and the mobile low-pressure pump. The results demonstrate that the optimal seismic capacity of MACST facilities for both NPP systems is 1.5g, which markedly reduces the probability of core damage. In particular, the core damage risk is reduced by approximately 23% for the OPR1000 system, with the core damage fragility reduced by approximately 72% at 1.0g seismic intensity. For the APR1400 system, the implementation of MACST is observed to reduce the core damage risk by approximately 17% and the core damage fragility by approximately 44% under the same conditions. These results emphasize the significance of integrating MACST facilities to enhance the resilience and safety of NPPs against seismic hazard scenarios, highlighting the necessity for continuous adaptation of safety strategies to address evolving natural threats.
With the recent accelerated policy-making and interests in new renewable energy, plans to develop and supply the new renewable energy have been devised across multiple regions in Korea. Solar energy, in particular, is being applied to small-scale power supply in provincial areas, as solar cells are used to convert solar energy into electric energy to produce electric power. Nonetheless, in the case of solar power plants, the need for a large stretch of land and considerable sum of financial support implies that the planning step should take into consideration the most suitable meteorological and geographical factors. In this study, the proxy variables of meteorological and geographical factors associated with solar energy were considered in analyzing the vulnerable areas regarding the photovoltaic power generation facility across the nation. GIS was used in the spatial analysis to develop a map for assessing the optimal location for photovoltaic power generation facility. The final vulnerability map developed in this study did not reveal any areas that exhibit vulnerability level 5 (very high) or 1 (very low). Jeollanam-do showed the largest value of vulnerability level 4 (high), while a large value of vulnerability level 3 (moderate) was shown by several administrative districts including Gwangju metropolitan city, Jeollabuk-do, Chungcheongbuk-do, and Gangwon- do. A value of vulnerability level 2 (low) was shown by the metropolitan cities including Daegu, Ulsan, and Incheon. When the 30 currently operating solar power plants were compared and reviewed, most were found to be in an area of vulnerability level 2 or 3, indicating that the locations were relatively suitable for solar energy. However, the limited data quantity for solar power plants, which is the limitation of this study, prevents the accuracy of the findings to be clearly established. Nevertheless, the significance of this study lies in that an attempt has been made to assess the vulnerability map for photovoltaic power generation facility targeting various regions across the nation, through the use of the GIS-based spatial analysis technique that takes into account the diverse meteorological and geographical factors. Furthermore, by presenting the data obtained for all regions across the nation, the findings of this study are likely to prove useful as the basic data in fields related to the photovoltaic power generation.
years, aquaculture plays an important role in fishery production in Korea. Nevertheless, aquaculture should be carefully managed by regulations because it also causes environmental load which can threat sustainability of aquaculture. For this reason, Korean government has regulated density of culturing facilities with the Fisheries Law and its adjective decrees. The regulatory compliance of fisheries businesses is very low because the criteria for the regulation of the density were not enacted with scientific research. Thus, this research was aimed to obtain scientific criteria for the regulation of oyster aquaculture in Jaran Bay with economic assessment. For this research, we collected the data necessary for the assessment on five investigation points in the bay for two years. With the data, simulation for the growth rate of oyster was performed and the result showed that at least 25.5% of facilities should be reduced. Also, it was revealed that removing 2 long lines would be most beneficial. The NPV of the best measurement was 35,120,300 won and IRR was 11.7%. With this research, the government will gain more accurate regulatory compliance due to the scientific approach. Moreover, fisheries businesses in oyster aquaculture can obtain flexibility to cope with market fluctuation.
Desalination plants have been recently constructed in many parts of the world due to water scarcity caused by population growth, industrialization and climate change. Most seawater desalination plants are designed with a submarine pipeline for intake and discharge. Submarine pipelines are installed directly on the bottom of the water body if the bottom is sandy and flat. Intake is located on a low-energy shoreline with minimal exposure to beach erosion, heavy storms, typhoons, tsunamis, or strong underwater currents. Typically, HDPE (High Density Polyethylene) pipes are used in such a configuration. Submarine pipelines cause many problems when they are not properly designed; HDPE pipelines can be floated or exposed to strong currents and wind or tidal action. This study examines the optimal design method for the trench depth of pipeline, analysis of on-bottom stability and dilution of the concentrate based on the desalination plant conducted at the Pacific coast of Peru, Chilca. As a result of this study, the submarine pipeline should be trenched at least below 1.8 m. The same direction of pipeline with the main wind is a key factor to achieve economic stability. The concentrate should be discharged as much as high position to yield high dilution rate.
It is considered necessary to renewal a considerable number of water supply facilities in Korea because they began to be intensively buried in the period of rapid economic growth. Accordingly, local water providers are required to take measures against this situation, but they have currently been caught in a vicious circle of the lack of budget spent in renewing water supply facilities because county-based small-scale local water supply cannot afford to cover annual expenditures with their revenues from water rates. Therefore, this study developed an optimal renewal planning model capable of achieving a balance of financial revenue and expenditure in local water supply using nonlinear programming and furthermore of minimizing the total cost incurred during the analysis. To this end, this study selected the water supply area located in County Y as a research area to build the financial revenue and expenditure and used Solver function provided by Microsoft Excel to use nonlinear programming. As a result, this study developed an optimal renewal planning model minimizing incurred costs in consideration of 6 items in the financial revenue and expenditure. The optimal renewal plan was modeled according to the available annual budget. As a result, this study proposed SICD, a scenario to minimize total costs from the perspective of water suppliers, and SITS, a scenario to minimize the increase in water rates from the perspective of consumers. It can be said that the method proposed in this study is the core of the optimal financial and renewal plans as a final stage of asset management for water supply facilities. Therefore, it is considered possible for local water providers to use the method proposed in this study according to circumstances for the asset management of water supply facilities.
We purpose a decision model to select the optimal facilities for the Decision Making problems with multiple characteristics(nominal-is-best characteristics, larger-is -better characteristics, smaller- is -better characteristics). Using this model, concept of the loss function is used in this comprehensive method of for select the optimal preferred facilities. To solve the issue on the optimal preferred facilities for multiple characteristics, this study propose the loss function with cross-product terms among the characteristics and derived range of the coefficients of the terms.