검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 74

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The complexation of silicon with carbon materials is considered an effective method for using silicon as an anode material for lithium-ion batteries. In the present study, carbon frameworks with a 3D porous structure were fabricated using metal–organic frameworks (MOFs), which have been drawing significant attention as a promising material in a wide range of applications. Subsequently, the fabricated carbon frameworks were subjected to CVD to obtain silicon-carbon complexes. These siliconcarbon complexes with a 3D porous structure exhibited excellent rate capability because they provided sufficient paths for Li-ion diffusion while facilitating contact with the electrolyte. In addition, unoccupied space within the silicon complex, combined with the stable structure of the carbon framework, allowed the volume expansion of silicon and the resultant stress to be more effectively accommodated, thereby reducing electrode expansion. The major findings of the present study demonstrate the applicability of MOF-based carbon frameworks as a material for silicon complex anodes.
        4,500원
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon nanofibers (CNFs) are promising materials for the construction of energy devices, particularly organic solar cells. In the electrospinning process, polyacrylonitrile (PAN) has been utilized to generate nanofibers, which is the simplest and most popular method of creating carbon nanofibers (CNFs) followed by carbonization. The CNFs are coated on stainless steel (SS) plates and involve an electropolymerization process. The prepared Cu, CNF, CNF–Cu, PANI, PANI–Cu, CNF–PANI, and CNF–PANI–Cu electrode materials’ electrical conductivity was evaluated using cyclic voltammetry (CV) technique in 1 M H2SO4 electrolyte solution. Compared to others, the CNF–PANI–Cu electrode has higher conductivity that range is 3.0 mA. Moreover, the PANI, CNF–PANI, and CNF–PANI–Cu are coated on FTO plates and characterized for their optical properties (absorbance, transmittance, and emission) and electrical properties (CV and Impedance) for organic solar cell application. The functional groups, and morphology-average roughness of the electrode materials found by FT–IR, XRD, XPS, SEM, and TGA exhibit a strong correlation with each other. Finally, the electrode materials that have been characterized serve to support and act as the nature of the hole transport for organic solar cells.
        4,500원
        3.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Dissolved organic matter (DOM) is a key component in the biogeochemical cycling in freshwater ecosystem. However, it has been rarely explored, particularly complex river watershed dominated by natural and anthropogenic sources, such as various effluent facility and livestock. The current research developed a new analytical method for TOC/TN (Total Organic Carbon/Total Nitrogen) stable isotope ratio, and distinguish DOM source using stable isotope value (δ13C-DOC) and spectroscopic indices (fluorescence index [FI] and biological index [BIX]). The TOC/TN-IR/MS analytical system was optimized and precision and accuracy were secured using two international standards (IAEA-600 Caffein, IAEA-CH-6 Sucrose). As a result of controlling the instrumental conditions to enable TOC stable isotope analysis even in low-concentration environmental samples (<1 mgC L-1), the minimum detection limit was improved. The 12 potential DOM source were collected from watershed, which includes top-soils, groundwater, plant group (fallen leaves, riparian plants, suspended algae) and effluent group (pig and cow livestock, agricultural land, urban, industry facility, swine facility and wastewater treatment facilities). As a result of comparing characteristics between 12 sources using spectroscopic indices and δ13C-DOC values, it were divided into four groups according to their characteristics as a respective DOM sources. The current study established the TOC/TN stable isotope analyses system for the first time in Korea, and found that spectroscopic indices and δ13C-DOC are very useful tool to trace the origin of organic matter in the aquatic environments through library database.
        4,000원
        5.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In recent years, supercapacitors have attracted extensive attention due to their advantages such as fast charge and discharge rate, high power density and long cycle life. Because of its unique porous structure and excellent electrochemical properties, heteroatom-doped porous carbon (HPC) is deemed as a promising electrode material for supercapacitors. However, it is a great challenge to synthesize electrode materials with large surface area, ultra-high porosity and good electrochemical performance. In this work, two-dimensional conjugated microporous polymers (CMPs) containing ketones were synthesized by a simple one-step coupling reaction and used as carbon precursors. A series of samples (CMP-Ts) were prepared with the procedures of coupling reaction and carbonization. The optimized carbon material has high specific surface area (up to 2229.85 m2 g− 1), porous structure, high specific capacitance (375 F g− 1 at 0.5 A g− 1), and good cycling stability (capacitance retention of 98.8% after 1000 cycles at 5 A g− 1). Further, the supercapacitor has an energy density of 28.8 Wh kg− 1 at a power density of 5000 W kg− 1. This work lays a foundation for the preparation of carbon materials using microporous polymer as a precursor system, provides a new way of thinking, and demonstrates a great potential of high-performance supercapacitors.
        4,000원
        6.
        2023.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, we synthesized pH-controlled resorcinol-formaldehyde (RF) gels through the polymerization of two starting materials: resorcinol and formaldehyde. The prepared RF gels were dried using an acetone substitution method, and they were subsequently carbonized under nitrogen atmosphere to obtain carbon xerogels (CX_Y) prepared at different pH (Y). The carbon xerogels were utilized as active materials for coin-type organic supercapacitor electrodes to investigate the influence of pH on the electrochemical properties of the carbon xerogels. The carbon xerogels prepared at lower pH (CX_9.5 and CX_10) exhibited sufficient particle growth, with a three-dimensional network of particles during the RF gel formation, resulting in the development of abundant mesopores. Conversely, the carbon xerogels prepared at higher pH (CX_11 and CX_12) retained densely packed structures of small particles, leading to pore collapse and low specific surface areas. Consequently, CX_9.5 and CX_10 showed high specific surface areas, and provided ample adsorption sites for the formation of electric double layers with electrolyte ions. Moreover, the three-dimensional particle network in CX_9.5 and CX_10 significantly enhanced electrical conductivity. The presence of well-developed mesopores in these materials further facilitated the effective transport of electrolyte ions, contributing to their superior performance as organic supercapacitor electrodes. This study confirmed that pH-controlled carbon xerogels are one of the promising active materials for organic supercapacitor electrodes. Furthermore, we concluded that pH during RF gel formation is a crucial factor determining the electrode performance of the carbon xerogels, highlighting the need for precise pH control to obtain high-performance carbon xerogel electrodes.
        4,000원
        7.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The disposal of organic pollutants is one of the important research topics. Some of the studies in this field are based on the degradation of organic pollutants with a catalytic agent. The cobalt tetraoxide/peroxymonosulfate system is an important catalytic system used for the radical degradation of organic pollutants. To increase the catalytic efficiency of such reactions, graphitization of activated carbon used as a support solid and nitrogen doping to the carbon structure are commonly used methods. In this study, cobalt tetraoxide production, N-doping and graphitization were carried out in a single step by heat treatment of activated carbon doped with the phthlocyanine cobalt (II) complex. The catalytic performance of the catalyst/ peroxymonosulfate system was investigated by changing the pH, catalyst, and PMS concentration parameters on rhodamine B and 1,3,5 trichlorophenol, which were used as models. It was seen that the catalysts had 97% activity on rhodamine B in 16 min and 100% on 1,3,5 trichlorophenol in 6 min. It was observed that the catalysts continued to show high catalytic activity for five cycles in reusability studies and had a very low cobalt leaching rate. These results are in good agreement with previously published studies. In line with these results, the synthesized N-doped graphitic carbon/Co3O4 catalyst can be used as an effective catalyst for wastewater treatments.
        4,900원
        8.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Volatile organic compounds (VOCs) are a paramount factor in air pollution of the environment. VOCs are vastly present in the wastewater discharged by the pharmaceutical industries. As it is evaporative in nature, it enters the environment spontaneously and causes air pollution, global warming, acid rain and climate change. VOCs must be treated before discharging or any other aerobic methods using an efficient catalyst. As the catalytic oxidation in the liquid phase is facile compared to the gas phase, this study investigated on catalytic liquid-phase oxidation of VOCs in model and real pharmaceutical wastewater. The model compounds of toluene-, ethylbenzene- and chlorobenzene-contaminated waters were treated separately along with the VOCs present in real pharmaceutical wastewater using a tungsten-based carbon catalyst. The tungsten was impregnated on the low-cost activated carbon matrix as it has good selectivity and catalytic property toward VOCs for facile catalytic operations. The metal catalysts were characterised by Fourier transform infrared spectroscopy, X-ray diffraction studies, and scanning electron microscopy with elemental and mapping analysis. The treatability was monitored by total organic carbon, ultra-violet spectroscopy and high-pressure liquid chromatography analysis. The tungsten-impregnated activated carbon matrix (WACM) has a catalytic efficiency toward toluene by 85.45 ± 1.78%, ethylbenzene by 93.9 ± 1.16%, chlorobenzene by 85.9 ± 2.26% and pharmaceutical VOCs by 85.05 ± 1.73% in 20 treatment cycles. The results showed that WACM worked efficiently in VOCs treatment, preventing the environment from air pollution. Furthermore, liquid-phase oxidation could easily be implementable on an industrial scale.
        5,200원
        9.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Polymeric carbon nitride (p-C3N4) is a promising platform as a metal-free photo-catalyst for various reactions. The p-C3N4 can be produced by thermal poly-condensation of organic precursors. Their morphological and chemical structures depend on reaction conditions during the poly-condensation. In this study, two p-C3N4 materials are produced by heat treatment of urea under different gaseous conditions with air (urea-derived carbon nitride under air, UCN-A) and N2 (UCN-N), respectively. UCN-A and UCN-N samples are mesoporous materials and show excellent photocatalytic activities for degrading rhodamine B, an organic pollutant, under the irradiation of visible light. The UCN-A shows the better photocatalytic activity than UCN-N. Various characterizations reveal that more porous structures and larger surface areas of UCN-A are reasons for the better photocatalytic performance.
        4,000원
        10.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A promising approach to enhance catalytic performance of supported heterogeneous nano-metal catalysts is to uniformly disperse active nanoparticles on the support. In this work, N-doped carbon-modified graphene (G@NC) nanosheet is designed and prepared to anchor Pd–Fe bimetallic nanoparticles (Pd–Fe/G@NC). The N-doped carbon modification on graphene surface could construct a sandwich-like structure (G@NC), which not only prevented the re-stacking of graphene nanosheets but also provided confined space for stable anchoring of bimetallic Pd–Fe nanoparticles. Benefitted from the unique structural property and synergetic effect of metal Pd and Fe species, the as-obtained Pd–Fe/G@NC composite displays excellent catalytic activity toward 4-nitrophenol reduction reaction with a turnover frequency of 613.2 min− 1, which is far superior to that of the mono-metal counterparts (Fe/G@NC and Pd/G@NC). More importantly, Pd–Fe/G@NC catalyst also exhibits favorable catalytic performance in the reduction of other nitroaromatic compounds (nitrobenzene, 4-nitrotoluene, 4-chloronitrobenzene, and so on). In addition, Pd–Fe/G@NC can catalyze the oxidation of furfuraldehyde to furoic acid with a high yield of 88.64%. This work provides a new guide for rationally designing and developing advanced supported heterogeneous bimetallic catalyst.
        4,200원
        11.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, a nanocomposite containing gold (Au) nanofibers decorated iron-metal–organic framework (Fe-MOF) was successfully synthesized for electrochemical detection of acetaminophen (AAP). The as-synthesized Au@Fe-MOF nanocomposite was confirmed by various characterization techniques. Morphological analysis showed that the Au nanofibers with an average size of less than 10 nm were dispersed on the Fe-MOF. Cyclic voltammetric analysis showed that the Au@Fe-MOF nanocomposite showed well-defined redox peaks with higher current than that of GCE and Fe-MOF. The Au@Fe-MOF/ GCE exhibited a linear range, sensitivity, and detection limit of 0.5–18 μM, 4.95 μM/μA/cm2, and 0.12 μM, respectively. The Au@Fe-MOF/GCE showed a very low response for the interference materials. The real sample analysis revealed that the Au@Fe-MOF/GCE showed good recovery towards the AAP in urine and paracetamol. Therefore, the developed sensor can be used for quality control of AAP.
        4,000원
        12.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We investigated physicochemical properties and isotopic compositions of organic matter (δ13CTOC and δ15NTN) in the old fish farming (OFF) site after the cessation of aquaculture farming. Based on this approach, our objective is to determine the organic matter origin and their relative contributions preserved at sediments of fish farming. Temporal and spatial distribution of particulate and sinking organic matter (OFF sites: 2.0 to 3.3 mg L-1 for particulate matter concentration, 18.8 to 246.6 g m-2 day-1 for sinking organic matter rate, control sites: 2.0 to 3.5 mg L-1 for particulate matter concentration, 25.5 to 129.4 g m-2 day-1 for sinking organic matter rate) between both sites showed significant difference along seasonal precipitations. In contrast to variations of δ13CTOC and δ15NTN values at water columns, these isotopic compositions (OFF sites: -21.5‰ to - 20.4‰ for δ13CTOC, 6.0‰ to 7.6‰ for δ15NTN, control sites: - 21.6‰ to - 21.0‰ for δ13CTOC, 6.6‰ to 8.0‰ for δ15NTN) investigated at sediments have distinctive isotopic patterns (p<0.05) for seawater-derived nitrogen sources, indicating the increased input of aquaculture-derived sources (e.g., fish fecal). With respect to past fish farming activities, representative sources (e.g., fish fecal and algae) between both sites showed significant difference (p<0.05), confirming predominant contribution (55.9±4.6%) of fish fecal within OFF sites. Thus, our results may determine specific controlling factor for sustainable use of fish farming sites by estimating the discriminative contributions of organic matter between both sites.
        4,300원
        13.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this report, we successfully prepared nitrogen-doped porous carbon (N-PC)/manganese dioxide ( MnO2) composite for a high-performance supercapacitor. X-ray diffraction data revealed the α-MnO2 phase. Transmission electron microscopy confirmed that the nanostructured α-MnO2 nanoparticles were coated on the surface of N-PC. The N-PC/α-MnO2 composite delivered a capacitance of 525.7 F g− 1 at the charging current of 1.0 A g− 1. The higher capacitance of the composite could be owing to the synergy of MnO2 and N-PC. Besides, the electrode exhibited a 14.7% capacitance loss after 6000 charge– discharge cycles at 10 A g− 1 indicating good electrochemical stability.
        4,000원
        14.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Here, a novel nitrogen-doped carbon nano-material (N-CGNM) with hierarchically porous structure was prepared from spent coffee ground for efficient adsorption of organic dyes by a simple one-step carbonization process (the uniform mixture consists of spent coffee ground, urea, and CaCl2 with the ratio of 1:1:1, which was heated to 1000 °C with a rate of 10 °C min− 1 and held at 1000 °C for 90 min in N2 atmosphere to carry out carbonization, activation, and N-doping concurrently). The morphology and structure analysis show that the prepared N-CGNM exhibits hierarchical pore structure, high specific surface area (544 m2/ g), and large numbers of positively charged nitrogen-containing groups. This unique structure and chemical composition endow N-CGNM with an excellent adsorption capacity toward anion Congo red (623.12 ± 21.69 mg/g), which is obviously superior to that (216.47 ± 18.43 mg/g) of untreated spent coffee ground-based carbon nano-materials (CGM). Oppositely, the adsorption capacity of N-CGNM towards cation methylene blue is inferior to that of CGM due to the existence of electrostatic repulsion. These findings show a great guidance for the development of low-cost but efficient selective adsorbent.
        4,300원
        15.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Sensing of volatile organic compounds (VOCs) is a growing research topic because of the concern about their hazard for the environment and health. Furan is a VOC produced during food processing, and it has been classified as a risk molecule for human health and a possible biomarker of prostate cancer. The use of carbon nanotubes for VOCs sensing systems design could be a good alternative. In this work, a theoretical evaluation of the interactions between furan and zigzag single-wall carbon nanotubes takes into account different positions and orientations of the furan molecule, within a density-functional theory first-principles approach. The van der Waals interactions are considered using different exchange-correlation functionals (BH,C09, DRSLL and KBM). The results indicate that vdW-functionals do not significantly affect geometry; however, the binding energy and the distance between furan and nanotube are strongly dependent on the selected exchange-correlation functional. On the other hand, the effects of single and double vacancies on carbon nanotube are considered. It was found that the redistribution of charge around the single-vacancy affects the bandgap, magnetic moment, and binding energy of the complex, while furan interaction with a double-vacancy does not considerably change the electronic structure of the system. Our results suggest that to induce changes in the electronic properties of carbon nanotubes by furan, it is necessary to change the nanotube surface, for example, by means of structural defects.
        4,000원
        16.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Doped porous carbon materials have attracted great interest owing to their excellent electrochemical performance toward energy storage applications. In this report, we described the synthesis of nitrogen-doped porous carbon (N-PC) via carbonization of a triazine-based covalent organic framework (COF) synthesized by Friedel–Crafts reaction. The as-synthesized COF and N-PC were confirmed by X-ray diffraction. The N-PC exhibited many merits including high surface area (711 m2 g−1), porosity, uniform pore size, and surface wettability due to the heteroatom-containing lone pair of electron. The N-PC showed a high specific capacitance of 112 F g−1 at a current density of 1.0 A g−1 and excellent cyclic stability with 10.6% capacitance loss after 5000 cycles at a current density of 2.0 A g−1. These results revealed that the COF materials are desirable for future research on energy storage devices.
        4,000원
        17.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Abstract In this study, we investigated that the activated carbon (AC)-based supercapacitor and introduced SIFSIX-3-Ni as a porous conducting additive to increase its electrochemical performances of AC/SIFSIX-3-Ni composite-based supercapacitor. The AC/SIFSIX-3-Ni composites are coated onto the aluminum substrate using the doctor blade method and conducted an ion-gel electrolyte to produce a symmetrical supercapacitor. The electrochemical properties of the AC/SIFSIX-3-Ni composite-based supercapacitor are evaluated through cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge/discharge tests (GCD). The AC/SIFSIX-3-Ni composite-based supercapacitor showed reasonable capacitive behavior in various electrochemical measurements, including CV, EIS, and GCD. The highest specific capacitance of the AC/SIFSIX-3-Ni composite-based supercapacitor was 129 F g−1 at 20 mV s−1.
        4,000원
        18.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanostructured ZnO materials have been studied extensively because of their functional properties. This paper presents a composite material of zinc oxide quantum dots (ZnO QDs) and porous carbon using a one-step carbonization process. The direct carbonization of a metal–organic complex generates mesostructured porous carbon with a homogeneous distribution of ZnO QDs. The structural and morphological properties are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The resulting ZnO QDs@porous carbon composite delivers a high specific capacity of 990 mAh g−1 at 100 mA g−1, 357 mAh g−1 at 2 A g−1, and high reversibility when evaluated as an anode for lithium ion batteries.
        4,000원
        19.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Biological phosphorus removal is accomplished by exposing PAO(phosphorus accumulating organisms) to anaerobic-aerobic conversion conditions. In the anaerobic condition, PAO synthesize PHB(polyhydroxybutyrate) and simultaneously hydrolysis of poly-p resulting phosphorus(Pi) release. In aerobic condition, PAO uptake phosphorus(Pi) more than they have released. In this study, cyanobacteria Synechococcus sp., which is known to be able to synthesize PHB like PAO, was exposed to anaerobic-aerobic conversion. If Synechococcus sp. can remove excess phosphorus by the same mechanism as PAO, synergistic effects can occur through photosynthesis. Moreover, Synechococcus sp. is known to be capable of synthesizing PHB using inorganic carbon as well as organic carbon, so even if the available capacity of organic carbon decreases, it was expected to show stable phosphorus removal efficiency. In 6 hours of anaerobic condition, phosphorus release occurred in both inorganic and organic carbon conditions but SPRR(specific phosphorus release rate) of both conditions was 10 mg-P/g-MLSS/day, which was significantly lower than that of PAO. When converting to aerobic conditions, SPUR(specific phosphorus uptake rate) was about 9 mg-P/g-MLSS/day in both conditions, showing a higher uptake rate than the control condition showing SPUR of 6.4 mg-P/g-MLSS/day. But there was no difference in terms of the total amount of removal. According to this study, at least, it seems to be inappropriate to apply Synechococcus sp. to luxury uptake process for phosphorus removal.
        4,000원
        20.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 다공성 활성탄소와 금속유기골격체 복합재료 기반의 전극 재료와 “이온젤” 이라고 불리는 고분자 고체 전해질을 이용하여 슈퍼커패시터를 제작 하였으며, 금속유기골격체의 함량에 따른 전기화학적 거동을 관찰하여 보았다. 슈퍼커패시터의 전기화학적 특성은 순환전압전류법(CV), 전기화학적 임피던스 분광법(EIS) 및 전정류 충·방전법(GCD)으로 분석하였으며, 그 결과로, 다공성 활성탄소 대비 금속유기골격체를 0.5 wt% 첨가 하였을 때 가장 높은 전기용량값을 확인 할 수 있었으며, 0.5 wt% 이상의 금속유기골격체의 함유량은 전기화학적 특성 감소에 영향을 주는 것으로 사료되며, 이러한 결과를 바탕으로 제조된 다공성 활성탄소/금속유기골격체 복합재료 기반의 슈퍼커패시터는 다양한 분야에 활용이 가능 할 것으로 판단된다.
        4,000원
        1 2 3 4