검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        1.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Porous W-10 wt% Ti alloys are prepared by freeze-drying a WO3-TiH2/camphene slurry, using a sintering process. X-ray diffraction analysis of the heat-treated powder in an argon atmosphere shows the WO3 peak of the starting powder and reaction-phase peaks such as WO2.9, WO2, and TiO2 peaks. In contrast, a powder mixture heated in a hydrogen atmosphere is composed of the W and TiW phases. The formation of reaction phases that are dependent on the atmosphere is explained by a thermodynamic consideration of the reduction behavior of WO3 and the dehydrogenation reaction of TiH2. To fabricate a porous W-Ti alloy, the camphene slurry is frozen at -30℃, and pores are generated in the frozen specimens by the sublimation of camphene while drying in air. The green body is hydrogen-reduced and sintered at 1000℃ for 1 h. The sintered sample prepared by freeze-drying the camphene slurry shows large and aligned parallel pores in the camphene growth direction, and small pores in the internal walls of the large pores. The strut between large pores consists of very fine particles with partial necking between them.
        4,000원
        2.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study is performed to fabricate a Ti porous body by freeze drying process using titanium hydride (TiH2) powder and camphene. Then, the Ti porous body is employed to synthesize carbon nanotubes (CNTs) using thermal catalytic chemical vapor deposition (CCVD) with Fe catalyst and methane (CH4) gas to increase the specific surface area. The synthesized Ti porous body has 100 μm-sized macropores and 10-30 μm-sized micropores. The synthesized CNTs have random directions and are entangled with adjacent CNTs. The CNTs have a bamboo-like structure, and their average diameter is about 50 nm. The Fe nano-particles observed at the tip of the CNTs indicate that the tip growth model is applicable. The specific surface area of the CNT-coated Ti porous body is about 20 times larger than that of the raw Ti porous body. These CNT-coated Ti porous bodies are expected to be used as filters or catalyst supports.
        4,000원
        3.
        2013.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Porous Ti-systems with unidirectionally aligned channels were synthesized by freeze-drying and a heat treatment process. TiH2 powder and camphene were used as the source materials of Ti and sublimable vehicles, respectively. Camphene slurries with TiH2 content of 10 and 15 vol% were prepared by milling at 50˚C with a small amount of oligomeric polyester dispersant. Freezing of the slurry was done in a Teflon cylinder attached to a copper bottom plate cooled at -25˚C while unidirectionally controlling the growth direction of the camphene. Pores were generated subsequently by sublimation of the camphene during drying in air for 48 h. The green body was heat-treated at 1100˚C for 1 h in a nitrogen and air atmosphere. XRD analysis revealed that the samples composed of TiN and TiO2 phase were dependent on the heat-treatment atmosphere. The sintered samples showed large pores of about 120 mm which were aligned parallel to the camphene growth direction. The internal wall of the large pores had relatively small pores with a dendritic structure due to the growth of camphene dendrite depending on the degree of nucleation and powder rearrangement in the slurry. These results suggest that a porous body with an appropriate microstructure can be successfully fabricated by freeze-drying and a controlled sintering process of a camphene/TiH2 slurry.
        4,000원
        4.
        2012.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        다공성 La0.6Sr0.4Ti0.3Fe0.7O3-δ로 코팅된 Ba0.5Sr0.5Co0.8Fe0.2O3-δ 관형 분리막은 압출성형 및 dip coating 방법으로 제조 되었다. 코팅된 관형 분리막의 특성은 X-선 회절분석기(XRD)와 전자 주사 현미경(SEM)을 이용하여 분석하였으며, 분석결과 2mum의 다공성 코팅 층을 갖는 페롭스카이트 구조임을 알 수 있었다. 산소투과량 분석은 750~950℃ 범위에서 공급측과 투과 측을 대기 중 공기와 진공으로 하여 수행되었다. 다공성의 La0.6Sr0.4Ti0.3Fe0.7O3-δ로 코팅된 Ba0.5Sr0.5Co0.8Fe0.2O3-δ 관형 분리막의 산소투과량은 950℃에서 3.2mL/min·cm2로 코팅되지 않은 분리막보다 높게 나타났으며, 11일 동안의 장기 안정성 실험결과 코팅 층에 의해 안정성이 증가됨을 알 수 있었다.
        4,000원
        5.
        2011.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Electro-Discharge Sintering (EDS) employs a high-voltage/high-current-density pulse of electrical energy, discharged from a capacitor bank, to instantaneously consolidate powders. In the present study, a single pulse of 0.57-1.1 kJ/0.45 g-atomized spherical powders in size range of 10~30 and consisting of -(Ti, Zr) and icosahedral phases were applied to examine the structural evolution of icosahedral phase during EDS. Structural investigation reveals that high electrical input energy facilitates complete decomposition of icosahedral phase into C14 laves and -(Ti, Zr) phases. Moreover, critical input energy inducing decomposition of the icosahedral phase during EDS depends on the size of the powder. Porous Ti and W compacts have been fabricated by EDS using rectangular and spherical powders upon various input energy at a constant capacitance of in order to verify influence of powder shape on microstructure of porous compacts. Besides, generated heat () during EDS, which is measured by an oscilloscope, is closely correlated with powder size.
        4,000원
        6.
        2009.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Ti scaffolds with a three-dimensional porous structure were successfully fabricated using powder metallurgy and modified rapid prototyping (RP) process. The fabricated Ti scaffolds showed a highly porous structure with interconnected pores. The porosity and pore size of the scaffolds were in the range of 66~72% and 300~400 μm, respectively. The sintering of the fabricated scaffolds under the vacuum caused the Ti particles to bond to each other. The strength of the scaffolds depended on the layering patterns. The compressive strength of the scaffolds ranged from 15 MPa to 52 MPa according to the scaffolds' architecture. The alkali treatment of the fabricated scaffolds in an aqueous NaOH solution was shown to be effective in improving the bioactivity. The surface of the alkali-treated Ti scaffolds had a nano-sized fibre-like structure. The modified surface showed a good apatite forming ability. The apatite was formed on the surface of the alkali treated Ti scaffolds within 1 day. The thickness of the apatite increased when the soaking time in a simulated body fluid (SBF) solution increased. It is expected that the surface modification of Ti scaffolds by alkali treatment could be effective in forming apatites in vivo and can subsequently enhance bone formation.
        4,000원
        7.
        2008.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Porous Ti implant samples were fabricated by the sintering of spherical Ti powders in a high vacuum furnace. To increase their surface area and biocompatibility, anodic oxidation and a hydrothermal treatment were then applied. Electrolytes in a mixture of glycerophosphate and calcium acetate were used for the anodizing treatment. The resulting oxide layer was found to have precipitated in the phase form of anatase TiO2 and nano-scaled hydroxyapatite on the porous Ti implant surface. The porous Ti implant can be modified via an anodic oxidation method and a hydrothermal treatment for the enhancement of the bioactivity, and current multi-surface treatments can be applied for use in a dental implant system.
        4,000원
        9.
        2005.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Porous and porous surfaced Ti-6Al-4V implant compacts were fabricated by electro-discharge-sintering (EDS) of atomized spherical Ti-6Al-4V powders with a diameter of , The solid core formed in the center of the compact after discharge was composed of acicular Widmanstatten grains, The hardness value at the solid core was much higher than that at the particle interface or particles in the porous layer, which can be attributed to both heat treatment and work hardening effects induced from EDS, The compressive yield strength was in a range of 19 to 436 MPa which significantly depends on both input energy and capacitance, Selected porous-surfaced Ti-6Al-4V implant compacts with a solid core have much higher compressive strengths compared to the human teeth and sintered Ti dental implants.
        3,000원
        10.
        2005.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Implant prototypes with various porosities were fabricated by electro-discharge-sintering of atomized spherical Ti-6Al-4V powders. Single pulse of 0.75 to 2.0 kJ/0.7 g-powder, using 150, 300, and capacitors was applied to produce a fully porous and porous surfaced implant compact. The solid core formed in the center of the compact after discharge was composed of acicular grains and porous layer consisted of particles connected in three dimensions by necks. The solid core and neck sizes increased with an increase in input energy and capacitance. On the other hand, pore volume decreased with increased capacitance and input energy due to the formation of solid core. Capacitance and input energy are the only controllable discharge parameters even though the heat generated during a discharge is the unique parameter that determines the porosity of compact. It is known that electro-discharge-sintering of spherical Ti-6Al-4V powders can efficiently produce fully-porous and porous surfaced Ti-6Al-4V implants with various porosities in a short time less then 400 isec by manipulating the discharging condition such as input energy and capacitance including powder size.
        4,000원