Hydrogen isotope separation involves the separation of hydrogen, deuterium, tritium, and their isotopologues. It is an essential technology for removing radioactive tritium contamination and for obtaining valuable hydrogen isotope resources. Among various hydrogen isotope separation technologies, water electrolysis technology exhibits a high separation factor. Consequently, the electrolysis of tritiated water is of paramount importance as a tritium enrichment method for treating tritium-contaminated water and for analyzing tritium in environmental samples. More recently, hydroelectrolysis technology, which utilizes proton exchange membranes (PEM) to reduce water inventory, has gained favor over traditional alkaline hydroelectrolysis. Nevertheless, it is crucial to decrease the hydrogen permeability of the PEM in order to mitigate the explosion risk associated with tritium hydrogen electrolysis devices. Additionally, efforts are needed to enhance the hydrogen isotope selectivity of the PEM and optimize the manufacturing process of the membrane-electrode assembly (MEA), thereby improving both hydrogen isotope separation performance and water electrolysis efficiency. In this presentation, we will delve into two key aspects. Firstly, we’ll explore the reduction of hydrogen permeability and the enhancement of the hydrogen isotope separation factor in PEM through the incorporation of 2D nanomaterial additives. Secondly, we’ll examine the influence of various MEAs preparation methods on electrolysis and isotope separation performances. Lastly, we will discuss the effectiveness of the developed system in separating deuterium and tritium.
Proton exchange membrane fuel cells (PEMFCs) are an auspicious energy conversion technology with the potential to address rising energy demands while reducing greenhouse gas emissions. The stack’s performance, durability, and economy scale are greatly influenced by the materials used for the PEMFC, viz., the membrane electrocatalyst assembly (MEA) and bipolar flow plates (BPPs). Despite extensive study, carbon-based materials have outstanding physicochemical, electrical, and structural attributes crucial to stack performance, making them an excellent choice for PEMFC manufacturers. Carbon materials substantially impact the cost, performance, and durability of PEMFCs since they are prevalently sought for and widely employed in the construction of BPPs and gas diffusion layers (GDLs)) and in electrocatalysts as a support material. Consequently, it is essential to assemble a review that centers on utilizing such material potential, focusing on its research development, applications, problems, and future possibilities. The prime focus of this assessment is to offer a clear understanding of the potential roles of carbon and its allotropes in PEMFC applications. Consequently, this article comprehensively evaluates the applicability, functionality, recent advancements, and ambiguous concerns associated with carbonbased materials in PEMFCs.
We used the measurement data derived from a proton transfer reaction time-offlight mass spectrometry (PTR-ToF-MS) to ascertain the source profile of volatile organic compounds (VOCs) from 4 major industrial classifications which showed the highest emissions from a total of 26 industrial classifications of A industrial complex. Methanol (MOH) was indicated as the highest VOC in the industrial classification of fabricated metal manufacture, and it was followed by dichloromethane (DM), ethanol (EN) and acetaldehyde (AAE). In the industrial classification of printing and recording media, the emission of ethylacetate (EA) and toluene (TOL) were the highest, and were followed by acetone (ACT), ethanol (EN) and acetic acid (AA). TOL, MOH, 2-butanol (MEK) and AAE were measured at high concentrations in the classification of rubber and plastic manufacture. In the classification of sewage, wastewater and manure treatment, TOL was the highest, and it was followed by MOH, H2S, and ethylbenzene (EBZ). In future studies, the source profiles for various industrial classifications which can provide scientific evidence must be completed, and then specified mitigation plans of VOCs for each industrial classification should be established.
현대에는 배터리를 비롯한 수소 기반 에너지가 효율적이라고 널리 알려져 있다.이러한 결과는 수소가 에너지 수 송체로써의 높은 효율을 가지고 있다는 사실로부터 기반한다. 자연 친화적이며 높은 순도를 가진 수소는 수전해로부터 제조 할 수 있다. 다양한 종류의 전기분해 중, 수소이온 교환막 수전해는 가장 재생 가능하며 싸고 자연 친화적이다. 이는 에너지 로써 사용이 되기에 적합한 산소와 수소를 생성한다. 이와 같이 많은 장점이 있기에 활발한 연구가 수소이온 교환막 전기분 해에 대해 진행되고 있다. 나피온은 수소이온 교환막으로 널리 쓰이지만, 비싼 비용과 다양한 다른 단점으로 인해 여러 가지 종류의 대체재가 개발되고 있다. 본 총설에서는 크게 나피온과 비나피온(non-Nafion) 기반 수소이온 교환막 수전해로 나누어 다루었다.
In 2000s, three-dimensional shapes of gluon particles in a proton were discovered. It has been demonstrated that asymmetrical gravitational forces exist between these particles. The asymmetric gravitational force between gluon particles in a proton causes that proton to accelerate on its own and this is the basis of the gas mo;ecular motions. In this work, a simplified acceleration model which simulated the asymmetric gravitational force in a proton was proposed. Here we report the comparative study between density distribution of gravitational forces obtained from the proposed model and Max well-Boltzmann velocity distribution that are in good agreement with expressing the behavior of gas molecules respectively.