Since warm mix asphalt (WMA) was introduced in early 2000, many of these pavements were built more than 10 years ago. Therefore, the WMA recycling research is important and necessary. However, the recycling issue of WMA has lagged behind other researches such as moisture sensitivity and long-term performance of WMA. If the aged WMA is incorporated into the asphalt mixes, the mixing and compaction temperatures of the mixtures are expected to decrease by the warm additives. The effect of warm additive after in-service period needs to be evaluated to see if the aged WMA can be used in asphalt pavements.
The main objective of this study was to evaluate the properties of recycled asphalt binders containing long-term aged (LTA) WMA binders through Superpave asphalt binder tests. The WMA binders were manufactured with two wax additives, LEADCAP and Sasobit, and artificially aged using rolling thin film oven (RTFO) and pressure aging vessel (PAV) procedures. The aged WMA binders were recycled at 15% and 30%. The viscosity properties for the binders in the original state, the rutting properties in the original state and after RTFO aging, the fatigue cracking properties at intermediate temperature after RTFO+PAV aging methods, and the low temperature cracking properties after RTFO+PAV procedures were evaluated.
The following conclusions were drawn for the materials used in this study:
(1) Although the addition of LTA into virgin binder increased the binder’s viscosity, the binders containing wax additives had significantly lower viscosities compared with the unmodified binders at all recycling content (0, 15, and 30%).
(2) Even though the binder with wax experienced the aging processes, the wax additive within recycled binder was effective to decrease the binder viscosity at almost the same degree, provided with the actual amount of wax in recycled binders.
(3) The binders containing wax additive had higher G*/sin δvalues than control binders at each recycling content. It means that the wax additive still plays an important role in increasing rutting resistance, even though the additive was aged within asphalt binder.
(4) From the DSR test at intermediate temperature, it appears that the higher recycling content seemed to have negative effects on resistance to fatigue cracking, regardless of the wax additive.
(5) The recycled WMA binders at 30% recycling content were observed to have significantly lower resistance on low temperature cracking (measured by the BBR test). It is recommended that the WMA be recycled in a lower contents in cold regions.
탈기/무산소조, 삼중반응조, 경사판침전조, 막분리조에서 경사판침전조에서 탈기/무산소조로 1Q의 내부반송과 삼중반응조로 0.3~0.5Q의 30분 마다 교대반송을 하였다. 교대반송시 NaOH를 주입하여 탈질원을 제공하였다. TN 유입 농도는 30.1mg/L에서 4.7mg/L로 제거되었으며, 처리수의 NH3-N의 평균농도는 0.5mg/L로 처리되어 대부분 질산화가 이루어졌다. NO3-N은 2.1mg/L로 무산소/탈기, 삼중반응조 및 침전조가 모두 하부로 연결되어 무산소조의 역할이 크게 증가하여 나타난 것으로 판단된다. NaOH(2,000mg/L)를 34mL/min으로 주입한 결과 반송수 상징액의 CODMn 농도는 24.7(19.9~31.0)mg/L로 탈질원이 형성되었음을 알 수 있었다.
탈기/무산소조, 삼중반응조, 경사판침전조, 막분리조에서 2, 3단계에 침전조 하부에 경사판을 설치하였고, 위어의 높이를 증가시켰다. 1단계에서 침전조와 막분리조의 MLSS 차이는 1,800mg/L 정도이며, 2, 3단계에서는 1,300mg/L로 막분리조의 MLSS 농도가 낮아졌다. 경사판침전조에서 막분리조로 이송되는 위어의 단면적이 증가함에 따라 유속이 느려지고, 막분리조로 이동하는 유속인 ULd과의 합이 낮아져 유량이 감소하는 것을 알 수 있다. 위어의 높이를 증가시키거나 단면적을 증가시키면 막분리조의 MLSS의 농축을 낮출 수 있고 경사판침전조의 MLSS 농도를 고농도로 유지 할 수 있어 분리막의 오염을 낮출 수 있다. 처리수의 H3-N의 평균농도는 0.5mg/L로 처리되어 대부분 질산화가 이루어졌다.
large amount of effluent water would be produced from low temperature coal catalytic gasification (LTCCG) developed by ENN Co, Ltd, which located at Langfang, Hebei Province. Many phenol homologous compounds and a large amount of other organic compounds were contained in this effluent water, but the overall concentration of the organic compounds was not very high (CODCr value was about several thousands mg/L). Too high cost would occur if treating it with a traditional liquid-liquid extraction process, and it was a waste of resources if the effluent water was directly purified with biochemical technology. In this paper, a decontaminating and recycling technique was developed for an effluent water, and a two-step technique includes flocculation-recycling and ion exchange adsorption-elution processes. By this two-step process, the CODCr value of the final outlet water was decreased to meet the related national standards, and at least 90% of the organics in the effluent water could be recovered.
Ocean discharge of sewage sludge, which started in the year of 1993 in Korea, was stopped in the beginning of 2012, Landfill of sewage sludge was also prohibited in 2003 owing to public acceptance of the lanfill sites, and partially reopened in 2007 due to the necessity of organic component in sludge to produce methane gas. Sludge recycle ratio will increase in sewage sludge treatment by volume reduction and drying, and then recycle of the thermal energy as fuel in power plant and also material as raw material of cement. Several drying processes are compared with reasoning and an appropriate drying sequence is suggested.
고농도 유기질 폐수처리를 위해 전기화학적 방법의 사용에 있어 관심이 고조되고 있다. 전기화학적 방법의 기술은 음식물폐수 및 공업적 폐수 문제를 해결하는데 이상적 처리 방법이다. 다른 화학적 처리 방법과는 다르게 전기화학적 처리장치는 2차 폐수의 부피를 증가시키지 않고 용수와 유기질 비료로 재활용한다. 전기화학적 방법은 전해부상장치를 무기화학적 약품과 병행하여 더욱 효과적으로 음식물 폐수를 처리한다. 이 연구는 2차 처리로 초음파와 오존처리로 탈색, COD와 BOD가 격감함으로 용수 및 유기질 비료로 활용하도록 실험하였다.
The waste substrate from sawdust based cultivation of Heicium erinaceum was reused. This process was conducted three times. Even when the waste substrate was reused at three times, the yield of fruiting bodies was equal to that of fresh medium. However, the yield of the 1st-waste substrate was the best of all waste substrate media and the yields of waste substrate media deceased with recycling times. The yield of the 1st or the 2nd waste substrate medium increased by 1.3-1.4 times compared with that of the fresh medium. The content of low molecular α-glucan and β-glucan of the 1st or the 2nd waste substrate medium increased and C-N ratio of the 1st or the 2nd waste substrate medium decreased. These results suggest that low molecular glucan and N sources contribute to increasing fruiting bodies. It was clear that the 1st and the 2nd waste substrate were useful for the cultivation material of Heicium erinaceum.
서울시내 도로 유지보수 4개 현장에서 수집된 재령 및 물리적 특성이 서로 다른 폐아스팔트를 폼드 아스팔트 공법을 사용하여 기층용 혼합물을 제작하였다. 혼합물은 구재와 신재의 비율을 서로 달리하여 제작하였으며 구재 비율 변화에 따른 성능을 실내시험을 실시하여 분석하였다. 실내시험은 마샬안정도, 간접인장강도, 회목탄성계수, 크리프 시험 및 휠 트레킹 시험을 실시하였으며 시험 결과는 재생가열 아스팔트 혼합물 시험 결과와 상호 비교하였다. 비교 결과, 재생 폼드 아스팔트 혼합물은 소성변형 및 온도 변화에 대한 저항성은 재생 가열 아스팔트 혼합물에 비하여 동등하거나 우수한 것으로 나타났다. 한편 재생 폼드 아스팔트 혼합물의 건조시 간접인장강도는 재생 가열 아스팔트 혼합물에 비하여 낮게 측정되었으며 습윤시에는 구재의 비율과 관계없이 모두 간접인장강도가 낮게 나타나서 습윤 조건에서는 취약한 것으로 발견되었다.
For a sustainable development, the resources circulation system should be established and required alternative logistics area of enterprises. In this paper, we are to suggest a direction through analysis effects, and reduce, recycle, reuse factor of tra
본 연구의 목적은 도시 하수처리를 위한 막결합형 A2O공정에 관해 실제적인 정보를 얻고자 하는 것이다. 공경 0.25;μm의 평판형 정밀여과막을 공기가 주입되는 호기조에 침지시켜 처리수는 저압으로 여과된다. 인공폐수를 대상으로 최적의 처리수질과 장기운전의 안정성 확보를 위한 내부반송율과 MLSS 농도 등의 최적 운전인자를 산정하고자 하였다. 내부반송은 각각 호기조에서 무산조로 반송한 것을 type 1, 무산조에서 혐기조로 반송한 것을 type 2라고 규정지었다. 플럭스는 15 LMH, type 1을 2Q로 고정하고 실험하였을 때 최적의 운전 조건은 MLSS 농도는 11,000 mg/L, type 2가 IQ로 나타났다. 이때, BOD CODcr, T-N, T-P의 제거율이 각각 97.3%,;94.2%,;64.0%,;63.0%로 타 내부반송율보다 효과적이었다.
본 연구는 재생골재를 도로의 보조기층재료 및 포장용 콘크리트 골재로 사용하기 위하여 수행되었다. 우선 보조기층재료로서의 활용성 여부를 파악하기 위하여 실내다짐시험, CBR 시험, 평판재하시험을 수행하였으며, 콘크리트용 골재로의 활용성을 보기 위하여 재생골재 첨가비율을 0, 20, 40, 60, 80%로 하여 설계기준강도 280kgf/cm2인 표층용 콘크리트를 제조하였다. 제조된 콘크리트로 굳지 않은 콘크리트 성질과 28일 양생 후 강도시험과 동결 융해에 따른 내구성 시험을 통해 폐콘크리트 재생골재의 활용성을 도로포장재료 측면에서 검토하였다. 실험결과 재생골재는 보조기층재료로서의 사용이 충분히 가능하며 표층용 콘크리트 골재로서 재생골재 첨가비율 40%까지 활용이 가능함을 알 수 있었다.
폐수를 한외여과할 경우 발생하는 막오염 현상을 최소화하기 위하여 세척수로 주기적으로 역세척 하였을 때 그 효과와 최적 조건을 조사하는 것이 본 연구의 목적이다. 폐우우유팩을 재셍히여 화장지를 생산하는 A 회사 및 골판지를 재생하는 B회사의 응집 침전 처리수를 대상으로, 평균기공의 크기가 0.02μm인관형 알루미나 세라믹 한외여과막으로 처리하면서 역세척 주기의 변화가 막오염과 투과수의 수질에 미치는 영향을 조사하였다. 이 대 역세척 시간은 모든 경우에 3초식 일정하게 행하였다. 원수 및 투과수의 부유 고형물 및 총용존 고형물, 화학적 산소요구량을 분석한결과, A회사의 폐수는 역세척 주기가 15초로 가장 짧은 경우 부유 물질의 배제율이 가장 우수하였다. 그러나, 화학적 산소요구량의 배제율은 A회사 및 B회사의 폐수가 모두 역세척 주기가 30인 경우 가장 높았다. 한편, 총용존 고형물의 배제율은 A회사 폐수가 역세척 주기 30초와 60초에서 유사한 ?을 보였고, B회사 폐수가 역세척 주기 60초에서 가장 탁월하였다. 운전시간에 다른 투과 플럭스의 변화로 역세척이 막오염의 진행에 미치는 영향을 조사한 결과, A회사 및 B회사의 응집 침전 처리수 모두 역세?을 하였을 때 투과플럭스가 서서히 감소하였고, 정상 운전시 보다 높은 값을 나타내었다. 그러나, 가장 높은 투과플러스를 유지하는 조건은 A회사 폐수와 B회사의 폐수가 차이를 보였는데 수질조사 결과 A회사 폐수는 부유 고형물 및 화학적 산소요구량이 높았으나 B회사 폐수는 종용존 고형물이 상대적으로 많기 때문에 발생한 결과로 추정된다.Energy)를 구해본 결과, μc-Si:H의 Ea 가 가장 낮은 것을 관찰 할 수 있었다.s derived by combining the numerous rainfall-runoff data. The conclusions are as follows; 1)The oscillations in the derived unit hydrograph are reduced by combining the data from each flood event. 2) The reciprocals of the minimum eigenvalue of XTX, 1/k and the condition number CN are increased when the oscillations are active in the derived unit hydrograph. 3)The parameter estimates are validated by extending the model to the Soyang river Dam site with elimination of the autocorrelation in the disturbances. Finally, this paper illustrates the application of the multiple regression model to drive an optimal unit hydrograph dealing with the multicollinearity and the autocorrelation which cause some problems. 우선적으로 고려하여 사용할 농약을 선
RUCAS (Recycling-Underlying Computational Dose Assessment System), a dose assessment program based on the RESRAD-RECYCLE framework, is designed to evaluate dose for recycling scenarios of radioactive waste in metals and concrete. To confirm the validity of the recycling scenarios provided by RUCAS, comparative evaluations will be conducted with RESRAD-RECYCLE for metal radioactive waste recycling scenarios and with MicroShield® for concrete radioactive waste recycling scenarios. In the evaluation of metal recycling scenarios without shielding, RUCAS showed similar results when compared to both MicroShield® and RESRAD-RECYCLE. This validates the function of dose assessments using RUCAS for metal recycling scenarios. However, when shielding was present, RUCAS produced results that were comparable to MicroShield®, but differed from those of RESRAD-RECYCLE. The underestimation of dose values up to 1.66E+08 times difference by RESRAD-RECYCLE could potentially decrease reliability and safety in evaluated doses, further emphasizing the importance of RUCAS. Because validation is also necessary for the expanded calculation capabilities resulting from methodological changes of RUCAS (i.e., various radiation source geometries), based on prior validations, it was determined that additional validations are required for different radiation source materials and shielding conditions. In case where the radiation source and shielding materials were identical, RUCAS and MicroShield® produced similar results according to both the Kalos et al. (1974) and Lin and Jiang (1996) methodologies. This demonstrates that the that differences in methodology are inconsequential when considering the same source and shielding materials. However, when the atomic number of the radiation source materials was larger than that of shielding material (HZ-LZ condition), RUCAS obtained results similar to MicroShield® only for the Kalos et al. (1974) methodology. While Lin and Jiang (1996) methodology yield higher results than MicroShield®. Lastly, in case where the atomic number of the radiation source material was smaller than that of the shielding material (LZ-HZ condition,) both methodologies yielded results comparable to MicroShield®. In conclusion, the validity of RUCAS’s shielding calculations has been verified, confirming improvements in dose assessment compared to RESRAD-RECYCLE. Additionally, we observed that shielding effectiveness calculations differ depending on the methodology of build-up effect. If the validity of these methodologies is confirmed, it is expected that selecting the most advantageous methodology for each condition will enable more rational dose assessments. Consequently, in future research, we plan to evaluate the validity of Lin and Jiang (1996) methodology using particle transport codes based on the Monte Carlo method, such as MCNP and Geant 4, rather than MicroShield®.
Decontamination and Dismantlement (D&D) are of great interest to owner of decommissioning as a large number of old nuclear facilities around the world are either shutdown or soon to be decommissioned. D&D are key steps in the decommissioning of nuclear power plants (NPPs). These activities typically generate a significant volume of radioactively contaminated waste. However, as much as 90% or more of this waste is lightly contaminated metal and concrete that could potentially be cleared for recycle or beneficial reuse, rather than disposed of as radioactive waste. The objective of this study is to provide reference for the application of current technologies to cost-effectively reduce the volume of radioactive waste associated with decommissioning, through review of experiences with decontamination of NPPs materials for unrestricted release, recycle or reuse, Also, highlights the importance of ongoing efforts to harmonize regulations and standards for radioactive waste management globally to enable reuse and recycle of valuable materials generated during decommissioning. The presented results in the balance of this study are organized to align with the sequence of operations for executing reuse or recycle of material for a decommissioning project. Concrete from buildings has most commonly been used for backfill of voids onsite, while metal has most commonly been melted or cleared into the conventional scrap recycling industry. Copper and lead, commonly found in cables and shielding, have high residual value and are thus highly desirable for recycling. Steel and stainless steel, while not inherently valuable, are present in many large components, such that decontamination for recycling can be cost-effective compared to disposal as radioactive waste. The decontamination techniques range from simple, inexpensive methods to complex, aggressive methods, each with advantages in various scenarios and limitations in others. Treatment often involves the sequential application of two or more decontamination techniques (e.g., chemical decontamination followed by abrasive blasting). Strategies for the characterization of materials for recycling include analyzing material in place before dismantlement, analyzing removed samples before or after dismantlement, and evaluating bulk material removed after dismantlement. If clearance and recycling are permitted, metals can be released to the conventional scrap recycling market, and concrete rubble can be used as backfill material onsite. In general, successful reuse/recycle projects require consideration of reuse/recycling objectives and implementation of associated planning activities early in the decommissioning process. The practicality of reuse/recycle depends on a number of high level (country and region-specific) and component level (material and case specific) factors. Since this information is useful to those responsible for planning or implementing the decommissioning of nuclear facilities, it is expected that it will be of great help especially to those in charge of decommissioning plan and managers in charge of decommissioning projects.
As the number of aging nuclear power plants increases, the market for dismantling nuclear power plants is growing rapidly. About 40% of the cost of dismantling nuclear power plants is the waste treatment cost incurred during the dismantling process, of which concrete waste accounts for a significant portion of the total waste. Securing technology for reducing and recycling concrete waste is very important not only in terms of economy but also in terms of environment. The objective is to synthesize geopolymer using inorganic materials from cement fine powder in concrete waste. Cement fine powder in concrete waste has a large amount of inorganic elements necessary for filing materials for radioactive waste treatment such as CaO and SiO2. In particular, Ca(OH)2 is synthesized by extracting Ca2+ from concrete waste. It can be used as an alkali activator to synthesize geopolymer. The mortar from crushed concrete was used as a source of calcium. The first step is to react with concrete waste and hydrochloric acid to extract ions. The second step is to react with NaOH and synthesize Ca(OH)2. The product was divided into two stages according to the reaction method and order. The first and second products were washed and dried, and then XRD and XRF were performed. The second product was matched only Ca(OH)2 and CaCO3 at the XRD peak. In the case of XRF, it was analyzed to have a purity of 67.80–78.73%. Synthesis of geopolymer by recycling materials extracted from concrete waste can reduce disposal costs and improve the utilization rate of disposal sites.