PURPOSES : The current research aims to evaluate the impact of coating materials and temperature on the percentage of bead loss in pavement markings. METHODS : Five mixtures with varying numbers of coating layers (C0, C1, C2, C3, and C4) were prepared to assess the effect of coating layers on bead loss. The effect of stripping was simulated using a modified Hamburg Wheel Tracking test. Furthermore, the influence of temperature and coating material on bead loss was examined using control mixture (without coating), YR, and SY coating mixtures. The percentage bead loss was evaluated by a developed image analysis program. RESULTS : The results demonstrated a substantial reduction in bead loss as the number of coating layers increased, with the C4 mixture showing an impressive 4.3% bead loss after 500 HWT braking cycles compared to 27.4% for the C0 mixture. Higher testing temperatures resulted in increased bead loss, with the control mixture exhibiting the highest percentage loss at 7,500 HWT rolling cycles. Conversely, the YR and SY coating mixtures displayed superior resistance to bead loss. Statistical analysis confirmed the significance of coating layers in reducing bead loss, further supporting the effectiveness of coatings in preserving bead adhesion during HWT cycles. CONCLUSIONS : The findings highlight the potential of coating materials as a key protective measure for enhancing the longevity and performance of pavement markings.
PURPOSES : This study provides fundamental information on the temperature variations in tunnel structures during severe fire events. A fire event in a tunnel can drastically increase the internal temperature, which can significantly affect its structural safety. METHODS : Numerical simulations that consider various fire conditions are more efficient than experimental tests. The fire dynamic simulator (FDS) software, based on computational fluid dynamics (CFD) and developed by the National Institute of Standards and Technology, was used for the simulations. The variables included single and multiple accidents involving heavy goods vehicles carrying 27,000 liters of diesel fuel. Additionally, the concrete material characteristics of heat conductivity and specific heat were included in the analysis. The temperatures of concrete were investigated at various locations, surfaces, and inside the concrete at different depths. The obtained temperatures were verified to determine whether they reached the limits provided by the Fire Resistance Design for Road Tunnel (MOLIT 2021). RESULTS : For a fire caused by 27,000 liters of diesel, the fire intensity, expressed as the heat release rate, was approximately 160 MW. The increase in the carrying capacity of the fire source did not significantly affect the fire intensity; however, it affected the duration of the fire. The maximum temperature of concrete surface in the tunnel was approximately 1400 ℃ at some distance away in a longitudinal direction from the location of fire (not directly above). The temperature inside the concrete was successfully analyzed using FDS. The temperature inside the concrete decreased as the conductivity decreased and the specific heat increased. According to the Fire Resistance Design for Road Tunnel (MOLIT 2021), the internal temperatures should be within 380 ℃ and 250 ℃ for concrete and reinforcing steel, respectively. The temperatures were found to be approximately 380 ℃ and 100 ℃ in mist cases at depths of 5 cm and 10 cm, respectively, inside the concrete. CONCLUSIONS : The fire simulation studies indicated that the location of the maximum temperature was not directly above the fire, possibly because of fire-frame movements. During the final stage of the fire, the location of the highest temperature was immediately above the fire. During the fire in a tunnel with 27,000 liters of diesel, the maximum fire intensity was approximately 160 MW. The capacity of the fire source did not significantly affect the fire intensity, but affected the duration. Provided the concrete cover about 6 cm and 10 cm, both concrete and reinforcing steel can meet the required temperature limits of the Fire Resistance Design for Road Tunnel (MOLIT 2021). However, the results from this study are based on a few assumptions. Therefore, further studies should be conducted to include more specific numerical simulations and experimental tests that consider other variables, including tunnel shapes, fire sources, and locations.
PURPOSES : The numeric-based Highway Pavement Management System (HPMS), along with an advanced three-dimensional pavement condition monitoring profiler vehicle (3DPM), in South Korea has presented remarkable advancements in pavement management since the early 2000. Based on these results, visual distress on pavement surfaces can be easily detected and analyzed. Additionally, the entire expressway pavement surface conditions in South Korea can be easily monitored using the current graphical user interface-based advanced information graphic (AIG) approach. Therefore, a critically negative pavement section can be detected and managed more easily and efficiently. However, the actual mechanical performance of the selected pavement layer still needs to be investigated in a more thorough manner not only to provide more accurate pavement performance results but also to verify the feasibility of the current 3DPM and AIG approaches. In this study, the low-temperature performance of the selected asphalt pavement layer section was evaluated to further verify and strengthen the feasibility of the current 3DPM and AIG approaches developed by the Korea Expressway Corporation. METHODS : Based on 3DPM and AIG approach, the positive and negative-riding-quality road sections were selected, respectively. The asphalt material cores were extracted from each section then bending beam rheometer mixture creep test was performed to measure their low-temperature properties. Based on the experimental results, thermal stress results were computed and visually compared. RESULTS : As expected, the asphalt material from the negative driving performance section presented a poorer low-temperature cracking resistance than that from the positive driving performance section. CONCLUSIONS : Current 3DPM equipment can successfully evaluate expressway surface conditions and the corresponding material performance quality. However, more extensive experimental studies are recommended to verify and strengthen the findings of this study
Temperature can modulate how insects respond to environmental stressors, such as starvation. In this study, we examine whether and how the effects of temperature on starvation resistance depend on nutritional condition and developmental stages in Drosophila melanogaster. Starvation resistance decreased as the temperature exposed during starvation rose from 18 to 28 ̊C, which was mainly caused by warming-induced increase in energy expenditure. When exposed to warm temperatures during feeding, D. melanogaster accumulated more energy reserves and thus become more starvation resistant. The temperature experienced during the larval stage also had a significant effect on starvation resistance at adult stages, with those larvae raised at cold temperatures developing into adult phenotypes with reduced resistance to starvation. This study suggests that the effects of temperature on starvation resistance are highly complex and context dependent in D. melanogaster.
Temperature can affect the ability of insects to tolerate prolonged period of food deprivation through altering the amountof energy storage, the speed of energy expenditure, or the threshold energy storage for survival. In this study, we examinedthe mechanistic basis of the temperature-dependence of starvation resistance in Drosophila melanogaster. Starvation resistancedecreased as the temperature experienced during starvation rose from 18 to 28 ̊C. This warming-mediated decrease instarvation resistance was due to accelerated energy expenditure. However, the threshold energy storage for survival wasnot affected by starvation temperature. Exposure to warm temperatures during feeding led D. melanogaster to accumulatemore energy reserves and thus to become more starvation resistant. This study highlights the important role played bytemperature in shaping the phenotypic responses of insects to starvation.
A metallic oxide layer of a heat-resistant element contributes to the high-temperature oxidation resistance by delaying the oxidation and has a positive effect on the increase in electrical resistivity. In this study, green compacts of Fecralloy powder mixed with amorphous and crystalline silica are oxidized at 950oC for up to 210 h in order to evaluate the effect of metal oxide on the oxidation and electrical resistivity. The weight change ratio increases as per a parabolic law, and the increase is larger than that observed for Fecralloy owing to the formation of Fe-Si, Fe-Cr composite oxide, and Al2O3 upon the addition of Si oxide. Si oxides promote the formation of Al2O3 and Cr oxide at the grain boundary, and obstruct neck formation and the growth of Fecralloy particles to ensure stable electrical resistivity.
Compared to steel of the same weight in steel concrete structures, fiber reinforced polymer (FRP) is known to have greater strength and better resistance to corrosion. As such, it is being proposed as an effective structural material. Despite its many advantages, FRP has not been rapidly adopted in civil structures. This is because it is more expensive, prone to brittle fracture, and has weak fire resistance. To examine changes in the mechanical properties of FRP and the effectiveness of fire resistant coating, this study conducted tensile tests on coated and uncoated specimens over varying temperature. Glass fiber has excellent fire resistance since it does not melt or burn at high temperatures. However, epoxy is unable to withstand exposure to temperatures exceeding the transition temperature, thus leading to unsatisfactory structural performance and fire resistance. This study investigated the behavioral changes in FRP by exposing the specimens to temperatures ranging from room temperature (approx. 25℃) to 300℃, so as to improve the fire resistance of epoxy.
The electrical properties of a laminated SMD type PTC thermistor for microcircuit protection were investigated as a function of polymer blowing agent addition. Green ceramics for multilayered BaTiO3-based PTCRs were formed by doctor blade method of barium titanate powders; we successfully laminated the sintered ceramic chips to obtain 10 layer chip PTCRs with PTC effect. The sintered density increases with increasing sintering temperature. The electrical properties of the sintered samples were strongly dependent on the calcination and addition of a polymer blowing agent. When BaTiO3 powders containing 0.2 mol% of Y2O3 were calcined at 1000˚C for 2 hrs, the resistivity jump was of 1-2 orders of magnitude. The resistivity at room temperature increases according to the polymer blowing agent addition. Also, the sample using the calcined powder showed a lower resistivity than that of the sample prepared using powders without calcinations. With an increase in the OBSH, the magnitude of the resistivity jumped as a function of the temperature increase. The resistivity of the sintered bodies after the addition of 0.5 wt% polymer blowing agent at 1290˚C for 2 h was shown to be about 8.5Ω·cm; the jump order of the sintered bodies was shown to be on the order of 102.
Chilling resistance at sowing is pre-requisite to avoid high temperature stress at terminal stage of spring planted maize crop. Seed priming offers promising solution to improve crop resistance against low or high temperature stress. Therefore, this study was conducted to evaluate the role of seed priming in improving the performance of spring planted maize under various sowing dates. Seeds of hybrid maize FH-810 were soaked in aerated solution of CaC}z (2.2%), moringa leaf extracts (MLE, 3.3%) and salicylic acid (SA, 50 mg L- 1 ) while dry and water soaked seeds (hydropriming) were used as controls. Both primed and untreated seeds were planted on 02 and 22 Feb, and 14 March. Late planted maize observed notable decline in mean emergence time than early planted crop owing to high temperature at planting. Both low and high temperature in early (02 Feb) and late (14 March) planted maize resulted in reduced seedling growth and tissue water status accompanied with elevated membrane electrolytes leakage. Moreover all the priming techniques improved the studied parameters of crop compared with control at all planting dates. Seed osmopriming with SA improved crop stress resistance by earlier emergence, increased seedling dry weight, tissue water status and improved membrane stability followed by osmopriming with CaC12.
덩굴쪼김병 저항성 수박 유전자원과 대목으로서 잠재력이 있는 박과작물의 수박 대목으로의 이용 가능성을 검토하기 위하여 수박대목 4계통을 포함한 7종류의 대목묘에 접목한 삼복꿀 수박을 저온조건과 적온조건의 하우스에서 재배하면서 그 생육 반응을 조사하였다. 저온에서의 생장정도는 적온에 비해 덩굴길이 40~47%, 엽면적 39~51%, 지상부 생체중 38~59%, 식물체 건물중 57~87% 수준이었다. 수박 유전자원인 PI 482322는 대목으로 이용했을 경우 저온에서 접수의 생장이 '신토좌' 대목과 유사할 정도로 좋았다. 또한 'PI 271769 × PI 296341'과 'PI 271769 × Calhoun Gray' 대목은 'FR 단토스' 대목구와 유사하였다. 저온신장성 지수는 C. martinezii, '신토좌', PI 482322와 'PI 271769 × PI 296341'를 대목으로 이용한 처리에서 50 이상으로 비교적 높았으며, 무접목묘와 'Knight'에서 낮았다. 수박 대목으로 많이 이용하고 있는 'FR 단토스' 박 대목에 비해 PI 482322, 'PI 271769 × PI 296341', 'PI 271769 × Calhoun Gray' 대목은 저온신장성이 좋거나 유사한 것으로 나타나서 저온기재배에서 이들 수박 대목의 이용 가능성을 확인할 수 있었다.
The sweetpotato whitefly, Bemisia tabaci, is a vector of more than 100 plantdiseased viruses as well as a serious pest to various horticultural crops. Virus acquisition affects the vector’s development and reproduction, but its mechanism is largely unknown. Here we compared the temperature responses between non-viruliferous and TYLCV-viruliferous Q biotype of B. tabaci. When both non-viruliferous and viruliferous whiteflies were exposed for 1 and 3 h at 4, 25, and 35°C, the mortality rate of viruliferous whiteflies is higher than nonviruliferous after exposure at 4°C and 35°C, but no differences at 25°C between them. Analysis of the expression levels of heat shock protein (hsp) genes using the quantitative realtime PCR showed that viruliferous whiteflies has higher expression in hsp70, and hsp90 at both 4°C and 35°C, but no differences at 25°C. The results suggest that vector insects may not be durable to unfavorable temperature conditions when they acquisite plant viruses.
높은 포장온도는 아스팔트포장 소성변형의 주요인이나 소성변형을 줄이기 위한 방안으로서 포장온도를 줄이는 측면에서는 아직 많은 연구가 이루어지지 않은 실정이다. 본 연구에서는 소성변형결함을 줄이기 위한 하나의 대안으로, 온도저감 효과가 있는 것으로 알려져 있는 보수성 포장을 배수성 포장의 하부층에 설치한 포장의 공용특성을 연구하였다. 본 연구의 목적은 보수형 배수성 포장의 온도저감효과를 정량화하고, 포장가속시험(Accelerated Pavement Testing)을 이용하여 온도 저감에 따른 소성변형 감소효과를 확인하고, 정량화하는데 있다. 또한 추가적으로 보수성 포장의 상대강도계수를 분석하고, 일반 포장과 비교하여 설계법 적용시 포장두께를 줄일 수 있는지 여부를 알아보고자 하였다. 본 연구를 위해 보수형 배수성포장 2개 단면 및 일반 배수성 포장 1개 단면 등 총 3개 시험구간이 시공되었다. 히팅 및 살수를 일정주기로 실시하였으며 하중조건은 윤하중 8.2ton, 타이어 공기압 7.03kgf/cm2 타이어 접지면적 610cm2이었다. 이 연구에서 포장체 온도저감효과는 중간층의 경우 6.6~7.9℃(평균7.4℃), 표층의 경우 7.9~9.8℃(평균 8.8℃)였으며, 이를 통해 포장표면의 소성변형 발생을 26% 감소시킬 수 있었다. 또한 탄성계수로부터 추정된 보수성 포장의 상대강도계수는 0.173으로 일반 밀입도 포장의 1.2배 정도였으며, 일반배수성 포장 구간에서는 표층, 중간층, 기층 모두 소성변형이 발생한데 반해 보수형 배수성 포장 구간에서는 표층에서 대부분의 소성변형이 발생된 것으로 나타났다.
본 논문은 상온상태의 폐아스팔트 포장재료를 가열재활용하여 기층용뿐만 아니라 표층용으로 활용함에 있어 재생 아스팔트 바인더의 특성을 연구한 것이다. 4종류의 RAP을 가지고 RAP 자체의 기본 물성을 시험하였다. 배합설계는 표층에는 RAP을 10, 20%를 첨가하였고, 기층에는 10. 20, 30%를 첨가하였다. 재생혼합물의 신규바인더로는 AC 60-80을 선정하였다. 침입도, 점도, GPC, TFO. 저온균열 저항성을 평가하기 위한 BBR 실험을 수행하였다. 절대점도와 GPC에서의 대형입도분자(LMS)를 지수함수 회귀분석을 통해 R2이 0.95 이상이었고 이것은 절대점도 추정에 GPC 결과가 상당히 정확함을 시사해주고 있다. RAP을 첨가한 재생 아스팔트 바인더의 PG 저온 등급은 일반 신규 바인더에 비해 한 단계 높은 등급을 나타내므로 저온균열에 대한 저항성은 약간 약한 것으로 나타났다.