검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 196

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Reproductive management practices play crucial roles to maximize the reproductive performance of cows, and thus contribute to farm profitability. We aimed to assess the reproductive management of cows currently practiced in the dairy farms in an urban farming system. Methods: A total of 62 dairy farms were randomly selected considering all size of farms such as small (1-5 cattle), medium (6-20 cattle) and large farms (> 20 cattle) from selected areas of Dhaka city in Bangladesh. The reproductive managementrelated parameters viz. estrus detection, breeding method, pregnancy diagnosis, dry cow and parturition management, vaccination and treatment of reproductive problems etc. were obtained in a pre-defined questionnaire during the farm visit. Results: The visual observation method was only used (100.0%; 62/62) for estrus detection irrespective of size of the farms; while farmers observed cows for estrus 4-5 times a day, but only for 20-60 seconds each time. Regardless of farm size, 89.0% (55/62) farms used artificial insemination (AI) for breeding the cows. Intriguingly, all farms (100.0%) routinely checked the cows for pregnancy at 35-40 days post-breeding using rectal palpation technique by registered veterinarian. However, only 6.5% (4/62) farms practiced dry cow management. Notably, all farms (100.0%) provided nutritional supplements (Vit D, Ca and P) during late gestation. However, proper hygiene and cleanliness during parturition was not practiced in 77.4% (48/62) farms; even though 96.7% (60/62) farms treated cows by registered veterinarian for parturition-related problems. Conclusions: While farmers used AI service for breeding and timely check their cows for pregnancy; however, they need to increase observation time (30 minutes/ observation, twice in a day: early morning and early night) for estrus detection, consider dry cow management and ensure hygienic parturition for maximizing production.
        4,000원
        4.
        2023.11 구독 인증기관·개인회원 무료
        In South Korea, the replacement of steam generators began with Kori Unit 1 in 1995, and to date, 20 steam generators have been replaced and are currently stored in intermediate storage facilities. In the future, additional decommissioned steam generators may arise due to measures like the extension of the lifespan of nuclear power plants. In Korea, technological development for dismantling steam generators is underway, and there is no track record of actual dismantling. Although the replaced decommissioned steam generators are stored in intermediate facilities, for site recycling purposes, steam generators, which have relatively lower radiation doses compared to reactor heads and other primary equipment, should be prioritized for dismantling. While there are various specifications for steam generators, those dismantled and stored domestically are of the Recirculation Type. They can be classified into three types: the Westinghouse type WH-51 used in Kori Unit 1, the Fra-51B used in Han-ul Units 1 and 2, and the OPR-1000 used in Han-ul Units 3 and 4. The quantity of U-Tubes varies depending on the specification, but the radiation is concentrated in the primary side components, the U-Tube and Chamber. Since the parts related to the secondary side are not contaminated, they can be disposed of independently after classification. To dismantle a steam generator, it is of utmost importance to first create a scenario regarding where and how the dismantling will take place. Through the analysis of the advantages and disadvantages of each scenario, the optimal timing, location, and cutting method for dismantling should be researched. Furthermore, based on those findings, the best scenario should be derived through an analysis of worker radiation exposure and dismantling costs. To achieve this, a 3D simulation software developed by Cyclelife Digital Solutions under the French EDF was utilized to conduct simulations based on different dismantling schedules and methods. As a result, the optimal scenario for dismantling the steam generator was derived.
        5.
        2023.11 구독 인증기관·개인회원 무료
        Advanced countries in the field of nuclear research and technology are currently examining the feasibility of deep geological disposal as the most appropriate method for the permanent management of high-level radioactive waste, with no intention of future retrieval. Deep geological disposal involves the placement of such waste deep underground within a stable geological formation, ensuring its permanent isolation from the human environment. To guarantee the enduring isolation and retardation of radionuclides with half-lives spanning tens of thousands to millions of years from the broader ecosystem, it is imperative to comprehend the long-term evolution of deep disposal systems, especially the role of natural barriers. These natural barriers, typically consisting of bedrock, encase the repository and undergo long-term evolutions due to tectonic movements and climate variations. For the effective disposal of high-level radioactive waste, a thorough assessment of the site’s long-term geological stability is essential. This necessitates a comprehensive understanding of its tectonic evolution and development characteristics, including susceptibility to seismic and magmatic events like earthquakes and intrusions. Furthermore, a detailed analysis of alterations in the hydrogeological and geochemical environment resulting from tectonic movements over extended time frames is required to assess the potential for the migration of radionuclides. In this paper, we have examined international evaluation methodologies employed to elucidate the predictive long-term evolution of natural barriers within disposal systems. We have extracted relevant methods from international case studies and applied a preliminary scenario illustrating the long-term evolution of the geological environment at the KURT (KAERI Underground Research Tunnel) site. Nevertheless, unlike international instances, the scarcity of quantitative data limits the depth of our interpretation. To present a dependable scenario in the future, it is imperative to develop predictive technologies aimed at comprehensively studying the geological evolution processes in the Korean peninsula, particularly within the context of radioactive waste disposal.
        6.
        2023.11 구독 인증기관·개인회원 무료
        In Korea, most temporary storage facilities for spent nuclear fuel are nearing saturation. As an alternative to this, the 2nd basic plan for high-level radioactive waste management specified the operation plan of dry interim storage facility. Meanwhile, the NSSC No. 2021-19 stipulates that it is necessary to evaluate the possibility and potential effect of accident before operating interim storage facility. Therefore, this study analyzed the categories of accident scenarios that may occur in dry storage facility as part of prior research on this. We investigated the case of categorization of dry storage facility accident scenarios of IAEA, NRC, KAREI, and KINS. The IAEA presented accident scenarios that could occur in on-site dry storage facility operated with silo and cask method. NRC has classified accident scenarios in dry storage facility and estimated the probability of accidents for each. KAERI and KINS selected major accident scenarios and analyzed the processes for each, in preparation for the introduction of dry storage facility in Korea in the future. Overall, a total of 10 accident scenarios were considered, and the scenarios considered by each institution were different. Among 10 scenarios, cask drop and aircraft collision were included in the categorization of most institutions. The results of this study can be used as basic data for cataloging accidents subject to safety evaluation when introducing dry interim storage facility in Korea in the future.
        7.
        2023.11 구독 인증기관·개인회원 무료
        Nuclear Material Accountancy (NMA) system quantitatively evaluates whether nuclear material is diverted or not. Material balance is evaluated based on nuclear material measurements based on this system and these processes are based on statistical techniques. Therefore, it is possible to evaluate the performance based on modeling and simulation technique from the development stage. In the performance evaluation, several diversion scenarios are established, nuclear material diversion is attempted in a virtual simulation environment according to these scenarios, and the detection probability is evaluated. Therefore, one of the important things is to derive vulnerable diversion scenario in advance. However, in actual facilities, it is not easy to manually derive weak scenario because there are numerous factors that affect detection performance. In this study, reinforcement learning has been applied to automatically derive vulnerable diversion scenarios from virtual NMA system. Reinforcement learning trains agents to take optimal actions in a virtual environment, and based on this, it is possible to develop an agent that attempt to divert nuclear materials according to optimal weak scenario in the NMA system. A somewhat simple NMA system model has been considered to confirm the applicability of reinforcement learning in this study. The simple model performs 10 consecutive material balance evaluations per year and has the characteristic of increasing MUF uncertainty according to balance period. The expected vulnerable diversion scenario is a case where the amount of diverted nuclear material increases in proportion to the size of the MUF uncertainty, and total amount of diverted nuclear material was assumed to be 8 kg, which corresponds to one significant quantity of plutonium. Virtual NMA system model (environment) and a divertor (agent) attempting to divert nuclear material were modeled to apply reinforcement learning. The agent is designed to receive a negative reward if an action attempting to divert is detected by the NMA system. Reinforcement learning automatically trains the agent to receive the maximum reward, and through this, the weakest diversion scenario can be derived. As a result of the study, it was confirmed that the agent was trained to attempt to divert nuclear material in a direction with a low detection probability in this system model. Through these results, it is found that it was possible to sufficiently derive weak scenarios based on reinforcement learning. This technique considered in this study can suggest methods to derive and supplement weak diversion scenarios in NMA system in advance. However, in order to apply this technology smoothly, there are still issues to be solved, and further research will be needed in the future.
        8.
        2023.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to the aging of a building, 38.8% (about 2.82 million buildings) of the total buildings are old for more than 30 years after completion and are located in a blind spot for an inspection, except for buildings subject to regular legal inspection (about 3%). Such existing buildings require users to self-inspect themselves and make efforts to take preemptive risks. The scope of this study was defined as the general public's visual self-inspection of buildings and was limited to structural members that affect the structural stability of old buildings. This study categorized possible damage to reinforced concrete to check the structural safety of buildings and proposed a checklist to prevent the damage. A damage assessment methodology was presented during the inspection, and a self-inspection scenario was tested through a chatbot connection. It is believed that it can increase the accessibility and convenience of non-experts and induce equalized results when performing inspections, according to the chatbot guide.
        4,000원
        11.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to solve the rapidly increasing domestic delivery volume and various problems in the recent metropolitan area, domestic researchers are conducting research on the development of “Urban Logistics System Using Underground Space” using existing urban railway facilities in the city. Safety analysis and scenario analysis should be performed for the safe system design of the new concept logistics system, but the scenario analysis techniques performed in previous studies so far do not have standards and are defined differently depending on the domain, subject, or purpose. In addition, it is necessary to improve the difficulty of clearly defining the control structure and the omission of UCA in the existing STPA safety analysis. In this study, an improved scenario table is proposed for the AGV horizontal transport device, which is a key equipment of an urban logistics system using underground space, and a process model is proposed by linking systematic STPA safety analysis and scenario analysis, and UCA and Control Structure Guidelines are provided to create a safety analysis.
        4,000원
        12.
        2023.05 구독 인증기관·개인회원 무료
        Among the twenty six nuclear power plants in Korea, twenty four plants are currently in operation excluding the two permanently shut-down Kori #1 and Wolsung #1 plants. The decommissioning process includes many tasks such as cutting, decontamination, disposal and treatment. Among the tasks, because cutting is one of the tasks performed close to the target structure, there is a possibility for the workers to be exposed excessively to the radiation. There are representative large structures such as steam generators, nuclear reactors, reactor coolant pump, and pressurizer, made of metals, and radioactive concrete, made of concrete. Especially, compared to the trend of research to manage the radiation exposure of steam generators that are directly connected to pressurizers, the trend of research to manage the radiation exposure of pressurizers to workers is not satisfactory. Moreover, although there have been many studies on radioactive concrete, the studies to manage the radiation exposure to workers with a systematic cutting scenario are insufficient. In this study, radioactive concrete, a representative large structure made of concrete, was selected as the target for evaluation. The conditions for evaluation were cutting speed (1~10 m2/hr) and the time for cutting (permanent shutdown~30 years after the shutdown). A cutting scenario was developed by applying the situation for abrasive decontamination beforehand and Hot-to-Cold and Cold-to-Hot, and effort was made to derive a reasonable plan. The evaluation result derived were hourly radiation dose distribution of 1.19~0.103 mSv/hour and 1.29~0.0113 mSv/hour for a scenario without abrasive decontamination (in the order of Hot to Cold, Cold to Hot), and hourly radiation dose distribution of 0.547~0.0479 mSv/hour and 0.608~0.0522 mSv/hour for a scenario with abrasive decontamination. The maximum value of collective dose derived was 1.54E+04 mSv at the cutting time of permanent shutdown with cutting speed of 1 m2/hour in the Cold to Hot scenario before abrasive decontamination, and the minimum value derived was 5.15E+01 mSv at the cutting time of 30-year after the permanent shutdown with cutting speed of 10 m2/hour in the Hot to Cold scenario after abrasive decontamination.
        13.
        2023.05 구독 인증기관·개인회원 무료
        To prove the long-term safety of deep geological repository, the safety assessment is needed to ensure that the expected performance of repository satisfies the regulatory standards. Scenario development is process of analyzing events and evolutions that can directly or indirectly affect the performance of a disposal system and is a pre-step for quantitative safety assessment. Scenarios are used to identify and define cases to be assessed by numerical modeling, and cases are mainly divided into normal (also called the ‘reference’ and ‘expected evolution’) and abnormal scenarios. Mainly two approaches have been used to set up scenarios. One is a bottom-up approach that starts with features, events and processes (FEPs). This approach can analyze the evolution and events related to the performance of the disposal system in an inductive manner. The other is top-down approach that analyzes the events and evolution of disposal system, focusing on situations that may affect the safety function of the components. This approach starts with a set of intuitively predefined expected failures of safety function. Combining the two approaches is more effective in demonstrating comprehensiveness which is a main challenge of scenario analysis, and almost national radioactive waste management institutions combine top-down and bottom-up approaches for development of scenarios. An approach combining the two approaches is called a hybrid approach, and the detailed method differs from each institution and has not been determined. In this study, some work for constructing the scenario using hybrid approach was performed. Firstly, defining each component’s safety function and screening FEPs according to several rules were performed for a generic repository. Secondly, we extracted performance factors that are considered likely to affect safety functions. And lastly, we integrated FEPs correlated with performance factor to simplify the analysis. These results will be material to construct the scenario using hybrid approach.
        17.
        2022.10 구독 인증기관·개인회원 무료
        Decommissioning of a nuclear power plant (NPP) generate large amounts of various types of wastes. In accordance with the Nuclear Safety and Security Commission Notice of Korea (No. 2020- 6), they are classified as High Level Waste (HLW), Intermediate Level Waste (ILW), Low Level Waste (LLW), Very Low Level Waste (VLLW) and Exempt Waste (EW) according to specific activities. More than 90% of the wastes are at exempt level, mostly metal and concrete wastes with low radioactivity, of which the concentrations of nuclides is less than the allowable concentration of self-disposal. The self-disposal or recycling of these wastes is widely used worldwide. More than 10,000 drums, based on 200 L drum, are expected to be produced in the decommissioning process of a unit of nuclear power plant. Due to the limited storage capacity of the intermediate & low level waste disposal facility in Gyeongju, recycling and self-disposal of EW are actively recommended in Korea. A variety of scenarios were proposed for recycling and self-disposal of decommissioning metal/ concrete wastes, and a computational program called REDISA was developed to perform the dose evaluation for each recycling and self-disposal scenario. The REDISA computer program can calculate external and internal exposure doses by simulating the exposure pathways from waste generation, thru transport, processing, manufacture, to the final destination of recycling or self-disposal. In this study, the self-disposal scenario was only considered for the dose evaluation. Many studies have been conducted to evaluate the exposure doses of the radioactive waste disposal sites. However, there have been few researches on dose evaluation for self-disposal landfills. In particular, the dose evaluation is important not only during the operation period, but also for a long period after the facility is closed. To this end, we developed a conceptual model for dose evaluation for post-closure scenarios of the self-disposal landfill of decommissioning metal/concrete wastes with reference to the methodology of IAEA-TECDOC-1380. The model incorporates three exposure pathways, including external exposure from contaminated soil, internal exposure by inhalation, and internal exposure by ingestion of water and food grown in contaminated soil. The duration of the dose evaluation is set to 100,000 years after the closure of landfill facility. Co-60 was selected as dominant nuclide, and dose evaluation was performed based on unit specific activity of 1 Bq/g. Exposure doses shall be verified for their application in accordance with the annual dose limit of 10 Sv/yr for self-disposal. As a result, the post-closure scenario of selfdisposal landfills have shown negligible effects on public health, which means that the exposures doses from transportation and operational processes should be considered more carefully for selfdisposal of decommissioning metal/concrete wastes.
        18.
        2022.10 구독 인증기관·개인회원 무료
        A radioactive waste disposal facility needs to be developed in a way to protect present and future generations and its environment. A safety assessment is implemented for normal and abnormal scenarios and human intrusion scenarios as a part of a safety case in developing a disposal facility for the radioactive waste. The human intrusion scenarios include a well scenario which takes into account various potential exposure groups (PEGs) who use a groundwater well contaminated with radionuclides released from the disposal facility. It is observed that a pumping rate has a negative correlation with the biosphere dose conversion factor (BDCF) in the well scenario. C-14 is shown to be a key radionuclide in the well scenario, and a special model based on the carbon cycle is applied for C-14. For Tc-99, an adsorption coefficient should be adjusted to be suitable for the site. The safety assessment for the radioactive waste disposal facility is successfully carried out for the well scenario. However, it is observed that site-specific models needs to be developed and sitespecific input data need to be collected in order to avoid unnecessary conservatism.
        19.
        2022.10 구독 인증기관·개인회원 무료
        Identifying plausible scenarios is necessary to evaluate the performance of the repository reliably over a very long period. All features, events, and processes (FEPs) expected in the repository should be comprehensively well-defined and structured into scenarios based on the relation analysis. A platform for the FEP DB management and relation analysis is needed to facilitate the efficient composition of the scenarios. For this purpose, the CYPRUS program was developed, but abandoned due to suspended FEPs and scenario research. Thus, it became necessary to build a new easy-tomaintain platform that inherits the legacy of CYPRUS and reflects the latest research. The data structure and user interface configuration were derived to develop a new platform. The new platform provides extensive data such as the assessment context, the FEP DB, the interaction between FEP contents, the relevance to other project FEPs, the influence on performance, the scenarios for the TSPA, the AMF, and the PA Data. The platform displays the long-term evolution FEPs developed by KAERI, the international and major project FEPs in table format. The correlation between FEP items is composed of a detailed interaction matrix and visualized as the chord diagram or arc diagram. The relevance and linkages between the project FEP items are mapped and presented in the form of network diagrams and network tables. The platform designed in this study will be used to manage the FEP DB, analyze and visualize the relationship between the FEP and scenarios, and finally construct the performance assessment scenarios. It is expected that the platform itself will be used as a part of the knowledge management system and facilitate efficient collaboration and knowledge exchange among experts.
        20.
        2022.10 구독 인증기관·개인회원 무료
        CYPRUS is a web-based waste disposal research comprehensive information management program developed by the Korea Atomic Energy Research Institute over three years from 2004. This program is stored as existing quality assurance documents and data, and the research results can be viewed at any time. In addition, it helps to perform all series of tasks related to the safety evaluation study of the repository in accordance with the quality assurance system. In the future, it is necessary to improve the user convenience by clarifying the relationship between FEP and scenarios and upgrading output functions such as visualization and automatic report generation. This purpose of this study is to research and develop the advanced program of CYPRUS. This study is based on building FEP, DIM and scenario databases. It is necessary to develop an algorithm to analyze and visualize the FEP, DIM and scenario relationship. This project is an integrated information processing platform for DB management and visualization considering user convenience. The first development goal is to build long-term evolutionary FEP, DIM, and scenarios as a database. The linkage by FEP item was designed in consideration of convenience by using a mixed delimiter of letters and numbers. This design provides information on detailed interactions and impacts between FEP items. Scenario data lists a series of events and characteristic change information for performance evaluation in chronological order. In addition, it includes information on FEP occurrence and mutual nutrition by period, and information on whether or not the repository performance is satisfied by item. The second development goal is to realize the relationship analysis and visualization function of FEP and scenario based on network analysis technique. Based on DIM, this function analyzes and visualizes interactions between FEPs in the same way as PID, RES, etc. In addition, this function analyzes FEP and DIM using network analysis technique and visualizes it as a diagram. The developed platform will be used to construct and visualize the FEP DB covering research results in various disposal research fields, to analyze and visualize the relationship between core FEP and scenarios, and finally to construct scenarios and calculation cases that are the evaluation target of the comprehensive performance evaluation model. In addition, it is expected to support the knowledge exchange of experts based on the FEP and scenario integrated information processing platform, and to utilize the platform itself as a part of the knowledge transfer system for knowledge preservation.
        1 2 3 4 5