Pure SnO2 has proven very difficult to densify. This poor densification can be useful for the fabrication of SnO2 with a porous microstructure, which is used in electronic devices such as gas sensors. Most electronic devices based on SnO2 have a porous microstructure, with a porosity of > 40%. In pure SnO2, a high sintering temperature of approximately 1300°C is required to obtain > 40% porosity. In an attempt to reduce the required sintering temperature, the present study investigated the low-temperature sinterability of a current system. With the addition of TiO2, the compositions of the samples were Sn1-xTixO2-CoO(0.3wt%)-CuO(2wt%) in the range of x ≤ 0.04. Compared to the samples without added TiO2, densification was shown to be improved when the samples were sintered at 950°C. The dominant mass transport mechanism appears to be grain-boundary diffusion during heat treatment at 950°C.
The low-temperature sinterability of TiO2-CuO systems was investigated using a solid solution of SnO2. Sample powders were prepared through conventional ball milling of mixed raw powders. With the SnO2 content, the compositions of the samples were Ti1-xSnxO2-CuO(2 wt.%) in the range of x 0.08. Compared with the samples without SnO2 addition, the densification was enhanced when the samples were sintered at 900oC. The dominant mass transport mechanism seemed to be grain-boundary diffusion during heat treatment at 900oC, where active grain-boundary diffusion was responsible for the improved densification. The rapid grain growth featured by activated sintering was also obstructed with the addition of SnO2. This suggested that both CuO as an activator and SnO2 dopant synergistically reduced the sintering temperature of TiO2.
In this study, we report the microstructure and characteristics of Ag-SnO2-Bi2O3 contact materials using a controlled milling process with a subsequent compaction process. Using magnetic pulsed compaction (MPC), the milled Ag-SnO2-Bi2O3 powders have been consolidated into bulk samples. The effects of the compaction conditions on the microstructure and characteristics have been investigated in detail. The nanoscale SnO2 phase and microscale Bi2O3 phase are well-distributed homogeneously in the Ag matrix after the consolidation process. The successful consolidation of Ag-SnO2-Bi2O3 contact materials was achieved by an MPC process with subsequent atmospheric sintering, after which the hardness and electrical conductivity of the Ag-SnO2-Bi2O3 contact materials were found to be 62–75 HV and 52–63% IACS, respectively, which is related to the interfacial stability between the Ag matrix, the SnO2 phase, and the Bi2O3 phase.
In this study, multilayered SnO nanoparticles are prepared using oleylamine as a surfactant at 165oC. The physical and chemical properties of the multilayered SnO nanoparticles are determined by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Interestingly, when the multilayered SnO nanoparticles are heated at 400oC under argon for 2 h, they become more efficient anode materials, maintaining their morphology. Heat treatment of the multilayered SnO nanoparticles results in enhanced discharge capacities of up to 584 mAh/g in 70 cycles and cycle stability. These materials exhibit better coulombic efficiencies. Therefore, we believe that the heat treatment of multilayered SnO nanoparticles is a suitable approach to enable their application as anode materials for lithium-ion batteries.
In-situ carbon-coated tin oxide (ISCC-SnO2) was fabricated by colloidal processing and sucrose was used as a soluble carbon source. ISCC-SnO2 was characterized by X-ray diffraction (XRD), Raman spectroscopy, and nitrogen adsorption–desorption by BET methods, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) properties of ISCC-SnO2 were investigated in 1 M Na2SO4 solution. The specific capacitance of ISCC-SnO2 was achieved 42.7 mFcm−2 at a scan rate of 25 mVs−1 and showed excellent charge–discharge behavior.
Tin oxide (SnO2) nanocrystals are synthesized by a thermal evaporation method using a mixture of SnO2 and Mg powders. The synthesis process is performed in air at atmospheric pressure, which makes the process very simple. Nanocrystals with a belt shape start to form at 900 oC lower than the melting point of SnO2. As the synthesis temperature increases to 1,100 oC, the quantity of nanocrystals increases. The size of the nanocrystals did not change with increasing temperature. When SnO2 powder without Mg powder is used as the source material, no nanocrystals are synthesized even at 1,100 oC, indicating that Mg plays an important role in the formation of the SnO2 nanocrystals at temperatures as low as 900 oC. X-ray diffraction analysis shows that the SnO2 nanocrystals have a rutile crystal structure. The belt-shaped SnO2 nanocrystals have a width of 300~800 nm, a thickness of 50 nm, and a length of several tens of micrometers. A strong blue emission peak centered at 410 nm is observed in the cathodoluminescence spectra of the belt-shaped SnO2 nanocrystals.
We investigate the reduction of SnO2 and the generation of syngas(H2, CO) using methane(CH4) and hydrogen(H2) or a mixed gas of methane and hydrogen as a reducing gas. When methane is used as a reducing gas, carbon is formed by the decomposition of methane on the reduced Sn surface, and the amount of generated carbon increases as the amount and time of the supply of methane increases. However, when hydrogen is used as a reducing gas, carbon is not generated. High purity Sn of 99.8 % and a high recovery rate of Sn of 93 % are obtained under all conditions. The effects of reducing gas species and the gas mixing ratio on the purity and recovery of Sn are not significantly different, but hydrogen is somewhat more effective in increasing the purity and recovery rate of Sn than methane. When 1 mole of methane and 1 mole of hydrogen are mixed, a product gas with an H2/CO value of 2, which is known to be most useful as syngas, is obtained.
Carbon nanofibers (CNF) are widely used as active agents for electrodes in Li-ion secondary battery cells, supercapacitors, and fuel cells. Nanoscale coatings on CNF electrodes can increase the output and lifespan of battery devices. Atomic layer deposition (ALD) can control the coating thickness at the nanoscale regardless of the shape, suitable for coating CNFs. However, because the CNF surface comprises stable C–C bonds, initiating homogeneous nuclear formation is difficult because of the lack of initial nucleation sites. This study introduces uniform nucleation site formation on CNF surfaces to promote a uniform SnO2 layer. We pretreat the CNF surface by introducing H2O or Al2O3 (trimethylaluminum + H2O) before the SnO2 ALD process to form active sites on the CNF surface. Transmission electron microscopy and energy-dispersive spectroscopy both identify the SnO2 layer morphology on the CNF. The Al2O3-pretreated sample shows a uniform SnO2 layer, while island-type SnOx layers grow sparsely on the H2Opretreated or untreated CNF.
Sb-doped SnO2 (ATO) transparent conducting films are fabricated using horizontal ultrasonic spray pyrolysis deposition (HUSPD) to form uniform and compact film structures with homogeneously supplied precursor solution. To optimize the molar concentration and transparent conducting performance of the ATO films using HUSPD, we use precursor solutions of 0.15, 0.20, 0.25, and 0.30 M. As the molar concentration increases, the resultant ATO films exhibit more compact surface structures because of the larger crystallite sizes and higher ATO crystallinity because of the greater thickness from the accelerated growth of ATO. Thus, the ATO films prepared at 0.25 M have the best transparent conducting performance (12.60±0.21 Ω/□ sheet resistance and 80.83% optical transmittance) and the highest figure-of-merit value (9.44±0.17 × 10-3 Ω-1). The improvement in transparent conducting performance is attributed to the enhanced carrier concentration by the improved ATO crystallinity and Hall mobility with the compact surface structure and preferred (211) orientation, ascribed to the accelerated growth of ATO at the optimized molar concentration. Therefore, ATO films fabricated using HUSPD are transparent conducting film candidates for optoelectronic devices.
Nanofibers(NFs), because of their high surface area and nanosized grains, have appropriate morphologies for use in chemiresistive-type sensors for gas detection applications. In this study, a highly sensitive and selective CO gas sensing material based on Au-decorated SnO2 NFs was fabricated by electrospinning. SnO2 NFs were synthesized by electrospinning and subsequently decorated with various amounts of Au nanoparticles(NPs) by sputtering; this was followed by thermal annealing. Different characterizations showed the successful formation of Au-decorated SnO2 NFs. Gas sensing tests were performed on the fabricated sensors, which showed bell-shaped sensing behavior with respect to the amount of Au decoration. The best CO sensing performance, with a response of ~20 for 10 ppm CO, was obtained at an optimized amount of Au (2.6 at.%). The interplay between Au and SnO2 in terms of the electronic and chemical sensitization by Au NPs is responsible for the great improvement in the CO sensing capability of pure SnO2 NFs, suggesting that Au-decorated SnO2 NFs can be a promising material for fabricating highly sensitive and selective chemiresistive-type CO gas sensors.
SnO2:CNT thick films for gas sensors were fabricated by screen printing method on alumina substrates and were annealed at 300 oC in air. The nano SnO2 powders were prepared by solution reduction method using tin chloride (SnCl2.2H2O), hydrazine (N2H4) and NaOH. Nano SnO2:CNT sensing materials were prepared by ball-milling for 24h. The weight range of CNT addition on the SnO2 surface was from 0 to 10 %. The structural and morphological properties of these sensing material were investigated using X-ray diffraction and scanning electron microscopy and transmission electron microscope. The structural properties of the SnO2:CNT sensing materials showed a tetragonal phase with (110), (101), and (211) dominant orientations. No XRD peaks corresponding to CNT were observed in the SnO2:CNT powders. The particle size of the SnO2:CNT sensing materials was about 5~10 nm. The sensing characteristics of the SnO2:CNT thick films for 5 ppm H2S gas were investigated by comparing the electrical resistance in air with that in the target gases of each sensor in a test box. The results showed that the maximum sensitivity of the SnO2:CNT gas sensors at room temperature was observed when the CNT concentration was 8wt%.
Tin oxides have been studied for various applications such as gas detecting materials, transparent electrodes, transparent devices, and solar cells. p-type SnO is a promising transparent oxide semiconductor because of its high optical transparency and excellent electrical properties. In this study, we fabricated p-type SnO thin film using rf magnetron sputtering with an SnO/Sn composite target; we examined the effects of various oxygen flow rates on the SnO thin films. We fundamentally investigated the structural, optical, and electrical properties of the p-type SnO thin films utilizing X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV/Vis spectrometry, and Hall Effect measurement. A p-type SnO thin film of PO2 = 3 % was obtained with > 80 % transmittance, carrier concentration of 1.12 × 1018 cm−3, and mobility of 1.18 cm2V− 1s−1. With increasing of the oxygen partial pressure, electrical conductivity transition from p-type to n-type was observed in the SnO crystal structure.
The present study demonstrates the effect of freezing conditions on the pore structure of porous Cu-10 wt.% Sn prepared by freeze drying of CuO-SnO2/camphene slurry. Mixtures of CuO and SnO2 powders are prepared by ball milling for 10 h. Camphene slurries with 10 vol.% of CuO-SnO2 are unidirectionally frozen in a mold maintained at a temperature of -30oC for 1 and 24 h, respectively. Pores are generated by the sublimation of camphene at room temperature. After hydrogen reduction and sintering at 650oC for 2 h, the green body of the CuO-SnO2 is completely converted into porous Cu-Sn alloy. Microstructural observation reveals that the sintered samples have large pores which are aligned parallel to the camphene growth direction. The size of the large pores increases from 150 to 300 μm with an increase in the holding time. Also, the internal walls of the large pores contain relatively small pores whose size increases with the holding time. The change in pore structure is explained by the growth behavior of the camphene crystals and rearrangement of the solid particles during the freezing process.
The triboelectric property of a material is important to improve an efficiency of triboelectric generator(TEG) in energy harvesting from an ambient energy. In this study, we have studied the TEG property of a semicon-ducting SnO2 which has yet to be explored so far. As a counter triboelectric material, PET and glass are used. Verticalcontact mode is utilized to evaluate the TEG efficiency. SnO2 thin film is deposited by atomic layer deposition on bareSi wafer for various thicknesses from 5.2 nm to 34.6 nm, where the TEG output is increased from 13.9V to 73.5V. Tri-boelectric series are determined by comparing the polarity of output voltage of 2 samples among SnO2, PET, and glass.In conclusion, SnO2, as an intrinsic n-type material, has the most strong tendency to be positive side to lose the electronand PET has the most strong tendency to be negative side to get the electron, and glass to be between them. Therefore,the SnO2-PET combination shows the highest TEG efficiency.
To study the characteristics of ZTO, which is made using a target mixed ZnO:SnO2= 1:1, the ZnO and SnO2 were analyzed using PL, XRD patterns, and electrical properties. Resulting characteristics were compared with the electrical characteristics of ZnO, SnO2, and ZTO. The electrical characteristics of ZTO were found to improve with increasing of the annealing temperature due to the high degree of crystal structures at high temperature. The crystal structure of SnO2 was also found to increase with increasing temperatures. So, the structure of ZTO was found to be affected by the annealing temperature and the molecules of SnO2; the optical property of ZTO was similar to that of ZnO. Among the ZTO films, ZTO annealed at the highest temperature showed the highest capacitance and Schottky contact.
Sb-doped SnO2(ATO) thin films were prepared using electrospinning. To investigate the optimum properties of the electrospun ATO thin films, the deposition numbers of the ATO nanofibers(NFs) were controlled to levels of 1, 2, 4, and 6. Together with the different levels of deposition number, the structural, chemical, morphological, electrical, and optical properties of the nanofibers were investigated. As the deposition number of the ATO NFs increased, the thickness of the ATO thin films increased and the film surfaces were gradually densified, which affected the electrical properties of the ATO thin films. 6 levels of the ATO thin film exhibited superior electrical properties due to the improved carrier concentration and Hall mobility resulting from the increased thickness and surface densification. Also, the thickness of the samples had an effect on the optical properties of the ATO thin films. The ATO thin films with 6 deposited levels displayed the lowest transmittance and highest haze. Therefore, the figure of merit(FOM) considering the electrical and optical properties showed the best value for ATO thin films with 4 deposited levels.
Fluorine-doped SnO2 (FTO) thin film/Ag nanowire (NW) double layers were fabricated by means of spin coating and ultrasonic spray pyrolysis. To investigate the optimum thickness of the FTO thin films when used as protection layer for Ag NWs, the deposition time of the ultrasonic spray pyrolysis process was varied at 0, 1, 3, 5, or 10 min. The structural, chemical, morphological, electrical, and optical properties of the double layers were examined using X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, the Hall effect measurement system, and UV-Vis spectrophotometry. Although pure Ag NWs formed isolated droplet-shaped Ag particles at an annealing temperature of 300 oC, Ag NWs covered by FTO thin films maintained their high-aspect-ratio morphology. As the deposition time of the FTO thin films increased, the electrical and optical properties of the double layers degraded gradually. Therefore, the double layer fabricated with FTO thin films deposited for 1 min exhibited superb sheet resistance (~14.9Ω/□), high optical transmittance (~88.6 %), the best FOM (~19.9 × 10−3 Ω−1), and excellent thermal stability at an annealing temperature of 300 oC owing to the good morphology maintenance of the Ag NWs covered by FTO thin films.
목 적: 본 연구는 SnO2를 모체로 하는 투명전도성 박막을 제조하기 위하여, 가용성 염인 Sn-Chloride와 H3PO4를 출발물질로 사용하였으며, 졸-겔법으로 박막을 제조하여 특성평가를 연구함이다. 방 법: Spin coating기를 이용하여 코팅용액을 기판에 떨어뜨린 후 공기분위기에서 2000 rpm으로 10초간 기판을 회전하여 박막을 도포하며, 500℃로 10분간 열처리하여 P-doped SnO2 박막을 제조하였다. 결 과: 박막의 표면에는 코팅 횟수가 5회, 10회의 경우에는 기공이나 크랙이 나타나지 않았으나 15회 및 20회로 증가함에 따라 미세한 기공들이 관찰되었다. 가시영역에서의 투과율은 5회 및 10회 코팅한 박막의 경우 약 85~90%을 나타내고 있으나, 코팅횟수가 15회 및 20회로 증가함에 따라 박막의 투과율은 80% 이하로 급격히 감소하였다. 4-probe법을 이용한 전기저항은 박막의 코팅횟수가 10회일 경우에 2.7×10-4Ω·cm-1이었으며, 코팅회수가 15회 및 20회로 증가함에 따라 9.8×10-3Ω?cm-1 및 8.3×10-2Ω·cm-1으로 박막의 저항값은 급격히 증가하였다. 결 론: 10회 코팅한 박막의 가시영역에서의 투과율은 85~90%로 매우 높았으며, 저항 값은 2.7×10-4Ω?cm-1로 투명 전도막으로 사용하기에 충분한 특성을 나타냈다.
마이크론 크기를 가지는 ITO(indium tin oxide) 입자들은 인듐과 틴의 수용성 전구체들과 유기 첨가제를 분무 열분해하여 얻었다. 유기 첨가제로서는 에틸렌글리콜과 시트르산을 이용하였다. 분무 열분해 시 에틸렌글리콜과 시트르산과 같은 유기첨가제를 첨가하지 않고 얻어진 ITO 입자들은 구형이며 속이 꽉찬 형태를 가지는데 비해 유기 첨가제를 첨가하여 분무 열분해를 하면 얻어지는 ITO 입자들은 유기 첨가제의 양이 증가 할수록 껍질이 얇고 다공성이 증대된 중공 입자가 얻어진다. 유기첨가제를 첨가하지 않고 분무 열분해를 통해 얻어지는 마이크론 크기를 가지는 ITO는 700℃에서 두 시간 동안의 후소성과 24 시간동안의 습식 볼밀링에 의해 나노 크기의 ITO로 전환되지 않으나, 유기첨가제를 첨가하고 분무 열분해를 통해 얻어지는 마이크론 크기를 가지는 ITO는 700℃에서 두 시간 동안의 후소성과 24 시간 동안의 습식 볼밀링에 의해 나노 크기의 ITO로 쉽게 전환되었다. 응집된 나노 크기의 ITO의 일차 입자의 크기를 Debye-Scherrer 식에 의해 계산하였고 ITO 입자를 압축하여 만든 펠렛의 표면저항을 측정하였다.
This work describes the coloration, chemical stability of SiO2 and SnO2-coated blue CoAl2O4 pigment. The CoAl2O4, raw materials, were synthesized by a co-precipitation method and coated with silica (SiO2) and tin oxide (SnO2) using sol-gel method, respectively. To study phase and coloration of CoAl2O4, we prepared nano sized CoAl2O4 pigments which were coated SiO2 and SnO2 using tetraethylorthosilicate, Na2SiO3 and Na2SiO3 as a coating material. To determine the stability of the coated samples and their colloidal solutions under acidic and basic conditions, colloidal nanoparticle solutions with various pH values were prepared and monitored over time. Blue CoAl2O4 solutions were tuned yellow color under all acidic/basic conditions. On the other hand, the chemical stability of SiO2 and SnO2-coated CoAl2O4 solution were improved when all samples pH values, respectively. Phase stability under acidic/basic condition of the core-shell type CoAl2O4 powders were characterized by transmission electron microscope, X-ray diffraction, CIE L*a*b* color parameter measurements.