In ecosystems within limited resources, interspecific competition is inevitable, often leading to the competitive exclusion of inferior species. This study aims to provide foundational information for the conservation and restoration management of Microphysogobio rapidus by evaluating species’ ecological response to biological factors within its habitat. To understand this relationship, we collected food web organisms from site where M. rapidus coexist with Microphysogobio yaluensis, a specie ecologically similar to M. rapidus, and evaluated the trophic levels (TL), isotopic niche space (INS), and the overlap of INS among fishes within the habitat using stable isotope analysis. Our analysis revealed that the M. rapidus exhibited a higher TL than M. yaluensis, with TL of 2.6 and 2.4, respectively. M. yaluensis exhibited a broad INS, significantly influencing the feeding characteristics of most fish. Conversely, M. rapidus showed a narrow INS and asymmetric feeding relationships with other species, in habitats with high competition levels. This feeding characteristics of M. rapidus indicate that the increase in competitors sharing the similar resources lead to a decrease in available resources and, consequently, is expected to result in a decrease in their density.
Dissolved organic matter (DOM) is a key component in the biogeochemical cycling in freshwater ecosystem. However, it has been rarely explored, particularly complex river watershed dominated by natural and anthropogenic sources, such as various effluent facility and livestock. The current research developed a new analytical method for TOC/TN (Total Organic Carbon/Total Nitrogen) stable isotope ratio, and distinguish DOM source using stable isotope value (δ13C-DOC) and spectroscopic indices (fluorescence index [FI] and biological index [BIX]). The TOC/TN-IR/MS analytical system was optimized and precision and accuracy were secured using two international standards (IAEA-600 Caffein, IAEA-CH-6 Sucrose). As a result of controlling the instrumental conditions to enable TOC stable isotope analysis even in low-concentration environmental samples (<1 mgC L-1), the minimum detection limit was improved. The 12 potential DOM source were collected from watershed, which includes top-soils, groundwater, plant group (fallen leaves, riparian plants, suspended algae) and effluent group (pig and cow livestock, agricultural land, urban, industry facility, swine facility and wastewater treatment facilities). As a result of comparing characteristics between 12 sources using spectroscopic indices and δ13C-DOC values, it were divided into four groups according to their characteristics as a respective DOM sources. The current study established the TOC/TN stable isotope analyses system for the first time in Korea, and found that spectroscopic indices and δ13C-DOC are very useful tool to trace the origin of organic matter in the aquatic environments through library database.
안정동위원소 분석 기법(Stable isotope analysis, SIA)은 환경과학, 생태학, 지구생물화학, 법의학, 고고학 등 다양한 연구 분야에 활용되고 있다. 본 총설에서는 수산 및 양식 연구에 안정동위원 소 비 분석 기법을 활용하기 위해 필요한 배경 지식을 소개하고자 한다. 특히, 자연 값(natural abundance)을 이용하는 연구에 초점을 두었고 원소가 생물의 조직으로 통합되는 과정에서 발 생하는 분별작용(동위원소 비의 변화)에 대한 원리와 안정동위원소 비가 유용한 도구로서 어 떤 목적으로 생태, 환경학 분야에 이용되는지, 나아가 수산 및 양식 분야에 활용 가능한 예들 을 제시하고자 한다. 본 논문을 통한 안정동위원소 분야의 이해로 향후 수산학 및 양식 연구 에서 안정 동위원소 비의 다양한 활용이 기대된다.
효과적인 물환경관리계획을 수립하기 위해서는 다양한 기원의 유기물이 난분해성 유기물 농도 증가에 영향을 줄 수 있는지 여부를 파악하는 것이 중요하다. 특히 상당량의 광합성 산물은 식물플랑크톤에 의해 매일 생성되고 있지만, 이들이 수계 내 난분해성 유기물에 기여하는지에 대한 정보는 부족하다. 본 연구에서는 13C 및 15N 추적자 첨가 실험을 통해 조류기원 유기물이 생분해 (60일, 암배양) 및 산화제 (과망간산칼륨) 처리 후 분해되지 않고 잔존하는지 여부를 확인하였다. 생분해 실험 결과 광합성을 통해 생성된 총 유기탄소 (TO13C), 입자성 유기탄소 (PO13C), 입자성 질소 (P15N)는 각각 26%, 20%, 17%가 비 생분해성 유기물로 잔존하였다. 또한 상당량의 PO13C가 과망간산칼륨에 의해 산화되지 않고 잔존하였다 (초기: 12%, 60일 암배양 후: 38%). 이는 미생물에 의해 사용된 후 남아있는 조류 기원 유기물이 난분해성 유기물에 기여할 수 있음을 의미 한다. 또한 미생물에 의해 변형된 조류기원 유기물의 양은 COD 산화율 및 유기물 지표 간 격차에 영향을 줄 것으로 사료된다.
Recently, quantitative analyses of food web structure based on carbon and nitrogen stable isotopes are widely applied to environmental assessments as well as ecological researches of various ecosystems, particularly rivers and streams. In the present study, we analyzed carbon and nitrogen stable isotope ratios of POM (both planktonic and attached forms), zooplankton, benthic macroinvertebrates and fish collected from 6 sites located at Nakdong River. Samples were collected from upstream areas of 5 weirs (Sangju, Gangjeong- Goryeong, Dalseong, Hapcheon-Changnyeong, and Changnyeong-Haman Weirs) and one downstream area of Hapcheon-Changnyeong Weir in dry season (June) and after rainy season (September). We suggested ranges of their carbon and nitrogen stable isotope ratios and calculated their trophic levels in the food web to compare their temporal and spatial variations. Trophic levels of organisms were relatively higher in Sangju Weir located at upper part of Nakdong River, and decreased thereafter. However, the trophic levels were recovered at the Changnyeong-Haman Weir, the lowest weir in the river. The trophic level calculated by nitrogen stable isotope ratios showed more reliable ranges when they were calculated based on zooplankton than POM used as baseline. The suggested quantitative ecological information of the majority of biological communities in Nakdong River would be helpful to understand the response of river food web to environmental disturbances and can be applied to various further researches regarding the quantitative approaches for the understanding food web structure and function of river ecosystems as well as restoration.
Stable isotope approach for aquatic ecology and environmental sciences has been introduced as very useful technique since 1980s and also has been applied to investigate various issues in aquatic ecology and environmental study last 10 years in Korea. Especially carbon and nitrogen isotope ratios have been mainly used to understand food web energy flow and ecosystem structure. In addition, nitrogen isotope ratio has been applied for nitrogen cycle and source identification as well as biomagnification studies. However, large temporal or spatial variations of nitrogen isotope ratio of primary producer have been found in many aquatic environments, and it is regarded as the critical problems to determine trophic level of aquatic animals. Recently, the compound specific isotope analysis of nitrogen within individual amino acids has been developed as an alternative method for trophic ecology. This article introduces the progress history of stable isotope application in aquatic ecology and environmental sciences, and also suggests new direction based on future prospects in stable isotope ecology and environmental study.
The nitrogen isotope value in both ammonium and nitrate ion were determined at 9 stations during both June and August 2016, in order to understand the origin of DIN at the Han river. δ15N-NO3 and δ15N-NH4 values in 8 stations (CP, SB, MHC, P4, SJ, SBC, P2, SC) were no significant variation. However δ15N-NO3 and δ15N-NH4 values in KK (Kyeongan stream) showed significant different in comparison with 8 stations, with an apparent increase of nitrogen isotope values. These results indicate that antropogenic nitrogen source influence on KK station. Also the δ13C and δ15N isotope ratio of phytoplankton (Diatom and Cyanobacteria) in KK (Kyeongan stream) showed heavier values, compared to other study stations. These results indicate that nitrogen isotope value in phytoplankton effects by different nitrogen source in study sites. These results suggest that the analysis of stable isotope ratios is a simple but useful tool for the identification of dissolved inorganic nitrogen origin in aquatic environments.
Although Agaricus bisporus mushroom is a popular mushroom consumed world-widely, the application of common bio-elements to verify its geographical origin remains highly limited. Therefore, this study aimed to verify whether the six cultivation regions in Korea of A. bisporus could be determined by the stable isotope composition analysis of bio-elements, which are unique and abundant in most living creatures. δ13C, δ15N, δ18O, and δ34S in A. bisporus were influenced by the region, cultivar, and the interactions between these two factors (P < 0.05). In particular, the effect of cultivation region was more significant to the isotope ratio profiles as compared to the mushroom cultivar effect. During the cultivation period of A. bisporus, the C, N, O, and S isotopic fractionation was observed between the mushroom and cultivation medium, note higher in the mushroom (P < 0.05). Two dimensional plot of δ15N, δ18O, or δ34S effectively distinguished the cultivation regions, Nonsan, Buyeo, Boryung, Daegu, and/or Gyeongju examined in this study. Further, these isotope ratio profiles measured in this study would be statistically analyzed with various chemometrics to provide isotope markers for the authenticity of geographical origin. Our preliminary case study improves our understanding of how the isotope composition of A. bisporus varies with respect to cultivation regions and cultivars. In conclusion, the analysis of stable isotope ratios is a suitable potential tool for discrimination between the cultivation origins of A. bisporus collected from Korea, with potential application to other countries after certain validation steps required.
Stable Isotope Analysis (SIA) of carbon and nitrogen is useful tool for the understanding functional roles of target organisms in biological interactions in the food web. Recently, mixing model based on SIA is frequently used to determine which of the potential food sources predominantly assimilated by consumers, however, application of model is often limited and difficult for non-expert users of software. In the present study, we suggest easy manual of R software and package SIAR with example data regarding selective feeding of crustaceans dominated freshwater zooplankton community. We collected SIA data from the experimental mesocosms set up at the littoral area of eutrophic Chodae Reservoir, and analyzed the dominant crustacean species main food sources among small sized particulate organic matters (POM, <50 μm), large sized POM (>50 μm), and attached POM using mixing model. From the results obtained by SIAR model, Daphnia galeata and Ostracoda mainly consumed small sized POM while Simocephalus vetulus consumed both small and large sized POM simultaneously. Copepods collected from the reservoir showed no preferences on various food items, but in the mesocosm tanks, main food sources for the copepods was attached POM rather than planktonic preys including rotifers. The results have suggested that their roles as grazers in food web of eutrophicated reservoirs are different, and S. vetulus is more efficient grazer on wide range of food items such as large colony of phytoplankton and cyanobacteria during water bloom period.
In order to reconstruct a benthic foodweb structure and assess the role of benthic microalgaes as a diet source for benthos, we analyzed the carbon and nitrogen stable isotopes of diverse benthos (bivalves, crustaceans, gastropods and fishes) and potential diets (particulate organic matter, sedimentary organic matter, benthic microalgae, seagrass, and macroalgaes) in the intertidal mudflat surrounding Yeongheung Island. The δ13C values of the diets indicated wide ranges (- 26.5‰ to - 8.4‰) while benthos showed a small range of δ13C values (-12.1‰ to - 17.8‰), although they were in the same range. Except for green algaes among the macroalgaes as well as sedimentary organic matter, δ15N values of the diet candidates (5.7±1.0‰) were lighter in comparison to those of the benthos (11.8±1.9‰). Based on the δ13C and δ15N data, the benthos were classified into 3 groups, indicating a different diet and trophic position. But benthic microalgae is the most important diet source for all three benthos groups based on their stable isotope ratios, suggesting benthic microalgae should be a main diet to the intertidal ecosystem. Hence this study highlights that the biomass of benthic microalgae as biological resource should be evaluated for the management of the intertidal ecosystem of Yeongheung Island.
태백산 분지에 분포하는 탄산염 및 규질쇄설성 혼합 퇴적물로 구성된 세송층(late Middle Cambrian to Furongian)은 δ 13 C값이 1.14에서 2.81‰을 갖는 SPICE (Steptoean positive carbon excursion)를 15 m 두께의 층서구간 에서 보여준다. SPICE는 Fenghuangella laevis대, Prochuangia mansuyi대 그리고 Chuangia대로 구성된 삼엽충 생물대 에서 산출되며 이는 Paibian Stage의 하부에 해당된다. 세송층은 엽층리 이암, 단괴상 셰일, 엽층리 사암, 균질사암, 석 회역암, 석회암-셰일 쌍을 포함한 6개의 암상으로 구성된다. 세송층은 폭풍파도기저면 아래의 외대륙붕에서 퇴적된 것 으로 알려져 있다. 시기적으로 Paibian Stage에 속하는 SPICE는 세송층에서 고수위 퇴적계 다발, 대비 정합면과 해침 퇴적계 다발에서 발견된다. SPICE의 최대 안정 탄소 동위원소 값은 상대적인 해수면 하강에 의해 형성된 대비 정합면 과 일치한다. 세송층에서 SPICE의 산출은 SPICE가 화석의 산출이 결여된 지층의 전세계적 대비를 위해 사용될 수 있 는 도구임을 암시한다.
Nitrogen (N) loading from domestic, agricultural and industrial sources can lead to excessive growth of macrophytes or phytoplankton in aquatic environment. Many studies have used nitrogen stable isotope ratios to identify anthropogenic nitrogen in aquatic systems as a useful method for studying nitrogen cycle. In this study to evaluate the precision and accuracy of Kjeldahl processes, two reference materials (IAEA-NO-3, N-1) were analyzed repeatedly. Measured the δ¹⁵N-NO₃and δ¹⁵N-NH₄values of IAEA-NO-3 and IAEA-N-1 were 4.7±0.2‰ and 0.4±0.3‰, respectively, which are within recommended values of analytical uncertainties. Also, we investigated spatial patterns of δ¹⁵N-NO₃and δ¹⁵N-NH₄in effluent plumes from a waste water treatment plant in Han River, Korea. δ¹⁵N-NO₃and δ¹⁵N-NH₄values are enriched at downstream areas of water treatment plant suggesting that dissolved nitrogen in effluent plumes should be one of the main N sources in those areas. The current study clarifies the reliability of Kjeldahl analytical method and the usefulness of stable isotopic techniques to trace the contamination source of dissolved nitrogen such as nitrate and ammonia.
본 연구에서는 동해안에서 10개의 석호들을 대상으로 어류군집의 조성의 차이를 파악하였고, 갈대 줄기의 탄 소와 질소안정동위원소분석을 통하여 각 석호생태계의 유역환경을 예측하였다. 석호들 사이에서 어류의 조성 (특히, 회유성 어류) 및 섭식기능군은 지형학적인 특성에 따라 분포의 차이를 보였다. 10곳의 석호들에서 갈대 줄기 δ13C과 δ15N값 각각 -28.40±0.11‰에서 -26.87 ±0.25‰과 -1.09±1.45‰에서 12.08±0.53‰의 범위 를 보였다. 이들 석호에서의 갈대의 줄기 δ15N 값의 차 이는 토지 이용에 따른 인위적인 오염원의 차이와 석호 의 지형학적인 특성 등과 관련이 있음을 보였다. 이 연 구는 어류의 서식지 확보, 석호생태계에서의 생물다양성 의 보전과 유역의 오염원에 대한 관리를 위한 유용한 정보를 제공할 수 있다.
본 연구에서는 동해안에서 10개의 석호들을 대상으로 어류군집의 조성의 차이를 파악하였고, 갈대 줄기의 탄소와 질소안정동위원소분석을 통하여 각 석호생태계의 유역환경을 예측하였다. 석호들 사이에서 어류의 조성(특히, 회유성 어류) 및 섭식기능군은 지형학적인 특성에 따라 분포의 차이를 보였다. 10곳의 석호들에서 갈대 줄기 δ13C과 δ15N값 각각 -28.40±0.11‰에서 -26.87±0.25‰과 -1.09±1.45‰에서 12.08±0.53‰의 범위를 보였다. 이들 석호에서의 갈대의 줄기 δ15N 값의 차이는 토지 이용에 따른 인위적인 오염원의 차이와 석호의 지형학적인 특성 등과 관련이 있음을 보였다. 이 연구는 어류의 서식지 확보, 석호생태계에서의 생물다양성의 보전과 유역의 오염원에 대한 관리를 위한 유용한 정보를 제공할 수 있다.