검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 29

        1.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study analyzes the discourse of Korean internet users regarding patient clothing and identifies the changes to structure and content of clothing resulting from infectious disease outbreaks. The analysis draws on texts from Korean blogs, internet cafes, and news articles from 2011 to 2021 related to patient clothing. Using Ucinet 5 and NodeXL 1.0.1 programs, network density, centrality, and cluster analyses were conducted using the Wakita–Tsurumi algorithm. Additionally, Latent Dirichlet Allocation (LDA) topic modeling was applied using Python 3.7 to further explore thematic patterns within the discourse. Throughout the period of study, it was found that users consistently discussed the specific purpose and functionality of patient clothing. Following the outbreak of COVID-19, the distribution and influence of keywords related to the functional aspects of patient clothing, such as “hygiene and safety,” significantly increased. An increased focus was placed on elements such as functionality, activity, autonomy, hygiene, and safety during the pandemic as public health concerns grew. It can be seen that patients increasingly share their experiences online and hospitalization rates surge during health crises; this study provides valuable insights into how the design of patient clothing can be improved through various informatics techniques. It underscores the evolving perception of patient clothing as essential medical equipment during health emergencies. In addition, it offers practical guidance for enhancing designs that better reflect shifting societal concerns, particularly regarding health, safety, and patient comfort.
        5,100원
        2.
        2024.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구의 목적은 국내 학술지에 게재된 크리스천 코칭과 관련된 논문을 대 상으로 키워드 네트워크과 토픽을 분석하여 연구 동향을 살펴보는 것이다. 이를 위하여 KCI에서 2008년부터 2024년까지 한국연구재단 등재지와 등재후보지에 게재된 36건의 크리스천 코칭 관련 논문을 분석하였다. 키워드 네트워크와 토픽 모델링을 분석하기 위하여 넷마이너(NetMiner) 4.0 프로그램을 활용하였다. 키 워드 네트워크 분석은 빈도분석과 키워드 동시 출현분석, 중심성 분석(연결 중 심성, 근접 중심성, 매개 중심성)을 하였다. 토픽모델링 분석은 LDA 기법을 활 용하여 논문에 잠재된 토픽과 키워드를 추출하였다. 키워드 네트워크 분석 결과 ‘코칭’, ‘연구’, ‘크리스천’, ‘프로그램’, ‘교회’, ‘리더십’ 등이 주요 키워드로 나타났 다. 토픽모델링 분석 결과 Topic-1(상담활동), Topic-2(목회 활동), Topic-3(코 칭 활동), Topic-4 (크리스천 신앙), Topic-5(코칭 연구), Topic-6(연구 활동), Topic-7(교수 활동)으로, 총 7개의 토픽으로 구성되었다. 연구 결과 ‘코칭’, ‘연 구’, ‘교회’, ‘크리스천’ 등의 키워드가 높은 연결 중심성을 보였음이 확인되었다. ‘코칭’은 연결 중심성, 근접 중심성과 매개 중심성 모두에서 높은 값을 보여, 크 리스천 코칭 연구의 핵심적인 역할을 하고 있음이 나타났다. 본 연구의 결과는 크리스천 코칭 연구에 유용한 기초자료를 제공하고 크리스천과 교회 성장에 도 움을 줄 수 있는 방안 마련에 기여 할 것이다.
        5,700원
        3.
        2024.03 구독 인증기관·개인회원 무료
        자율주행에 관한 관심은 전 세계적으로 증가하고 있으며, 글로벌 자동차 제조사들과 기술기업들이 자율주행 분야에 대한 투자를 늘 리고 있어 향후 자동차 산업과 교통체계 전반에 큰 변화가 전망된다. 이처럼 자율주행 관련 연구와 개발은 끊임없이 진보하고 있으며, 관련 연구 수행은 계속해서 이루어질 것으로 보인다. 연구 수행에 있어 동향 파악은 필수 요소이며, 본 연구에서는 국내 자율주행 연 구 동향을 분석하고자 한다. 연구 동향을 분석한 다양한 분야의 선행연구 검토 결과, 각각 연구 목적에 맞는 다양한 데이터베이스를 이용하여 데이터를 수집하였으며 연구 주제어 혹은 초록을 분석데이터로 활용하였음을 확인하였다. 자율주행 연구 동향에 대해 분석 한 선행연구 검토 결과, 기존 연구들은 분야를 구분하지 않고 연구를 수집·분석하였음을 확인하였다. 자율주행은 도로, 교통, 자동차, 기계, 컴퓨터, 전자, 전기 등 다양한 분야를 포함하고 있기에 분야별 연구 동향 분석이 필요하다. 이에 본 연구에서는 도로·교통 분야 의 동향 분석을 위해 최근 5년간(2019년~2023년) 국내 도로·교통 분야 등재 학술지에 게재된 학술 논문을 대상으로 연구 동향을 분석 하였으며, 보다 많은 텍스트 데이터를 활용하기 위해 주제어가 아닌 초록을 활용하였다. 키워드 출현 빈도 분석을 통해 주요 키워드를 도출하였으며, 토픽 모델링을 통해 주요 연구주제를 도출하였다. 본 연구에서 수행한 자율주행 연구 동향 파악은 도로·교통 분야에서 향후 수행될 자율주행 연구 방향 수립에 시사점을 제공할 것이라 기대된다.
        4.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to identify the major peacekeeping activities that the Korean armed forces has performed from the past to the present. To do this, we collected 692 press releases from the National Defense Daily over the past 20 years and performed topic modeling and social network analysis. As a result of topic modeling analysis, 112 major keywords and 8 topics were derived, and as a result of examining the Korean armed forces's peacekeeping activities based on the topics, 6 major activities and 2 related matters were identified. The six major activities were 'Northeast Asian defense cooperation', 'multinational force activities', 'civil operations', 'defense diplomacy', 'ceasefire monitoring group', and 'pro-Korean activities', and 'general troop deployment' related to troop deployment in general. Next, social network analysis was performed to examine the relationship between keywords and major keywords related to topic decision, and the keywords ‘overseas’, ‘dispatch’, and ‘high level’ were derived as key words in the network. This study is meaningful in that it first examined the topic of the Korean armed forces's peacekeeping activities over the past 20 years by applying big data techniques based on the National Defense Daily, an unstructured document. In addition, it is expected that the derived topics can be used as a basis for exploring the direction of development of Korea's peacekeeping activities in the future.
        5,100원
        5.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we propose a novel approach to analyze big data related to patents in the field of smart factories, utilizing the Latent Dirichlet Allocation (LDA) topic modeling method and the generative artificial intelligence technology, ChatGPT. Our method includes extracting valuable insights from a large data-set of associated patents using LDA to identify latent topics and their corresponding patent documents. Additionally, we validate the suitability of the topics generated using generative AI technology and review the results with domain experts. We also employ the powerful big data analysis tool, KNIME, to preprocess and visualize the patent data, facilitating a better understanding of the global patent landscape and enabling a comparative analysis with the domestic patent environment. In order to explore quantitative and qualitative comparative advantages at this juncture, we have selected six indicators for conducting a quantitative analysis. Consequently, our approach allows us to explore the distinctive characteristics and investment directions of individual countries in the context of research and development and commercialization, based on a global-scale patent analysis in the field of smart factories. We anticipate that our findings, based on the analysis of global patent data in the field of smart factories, will serve as vital guidance for determining individual countries' directions in research and development investment. Furthermore, we propose a novel utilization of GhatGPT as a tool for validating the suitability of selected topics for policy makers who must choose topics across various scientific and technological domains.
        5,100원
        7.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The advent of big data has brought about the need for analytics. Natural language processing (NLP), a field of big data, has received a lot of attention. Topic modeling among NLP is widely applied to identify key topics in various academic journals. The Korean Society of Industrial and Systems Engineering (KSIE) has published academic journals since 1978. To enhance its status, it is imperative to recognize the diversity of research domains. We have already discovered eight major research topics for papers published by KSIE from 1978 to 1999. As a follow-up study, we aim to identify major topics of research papers published in KSIE from 2000 to 2022. We performed topic modeling on 1,742 research papers during this period by using LDA and BERTopic which has recently attracted attention. BERTopic outperformed LDA by providing a set of coherent topic keywords that can effectively distinguish 36 topics found out this study. In terms of visualization techniques, pyLDAvis presented better two-dimensional scatter plots for the intertopic distance map than BERTopic. However, BERTopic provided much more diverse visualization methods to explore the relevance of 36 topics. BERTopic was also able to classify hot and cold topics by presenting ‘topic over time’ graphs that can identify topic trends over time.
        4,900원
        8.
        2023.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study compared research trends in universities general English program before and after the COVID-19 pandemic. After analyzing 248 articles from KCI using frequency analysis, centrality analysis, and topic modeling, this study found consistent keywords indicating a focus on learning objectives, effectiveness analysis, satisfaction surveys, and level-based learning before and after the COVID-19 pandemic. Centrality analysis revealed keywords like “teaching, research, analysis” before COVID-19 and “satisfaction, study, level, activity, effect” after COVID-19, indicating a shift towards learner satisfaction, level-based learning, and effectiveness analysis due to the transition to online learning. Topic modeling revealed shifts in research trends: Pre-COVID-19 focused on effective teaching methods, evaluation techniques, and cultural content, while Post-COVID-19 prioritized online teaching methods, web-based platforms, and selfdirected learning. Future research should address self-directed learning, attitudes and goal setting, closing learning gaps in online/blended learning, and developing effective online assessment tools and evaluation strategies. This study provides valuable insights and directions for further research in general English programs.
        5,700원
        9.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 코로나 이후 색조화장품 시장의 소비자들의 온라인 관심 정보에 대한 자료 수집 을 통하여 색조화장품 정보 검색의 특성과 텍스트 마이닝 분석 결과에 나타난 코로나 이후 색조화장품 시 장의 주요 관심정보들을 분석하고자 하였다. 실증분석에서는 “색조화장품” 이라는 단어를 포함하는 뉴스, 블로그, 카페, 웹페이지 등의 모든 문서들을 분석 대상으로 텍스트 마이닝을 수행하였다. 분석 결과 코로나 이후 색조화장품에 대한 온라인 정보 검색은 주로 구매 정보와 피부와 마스크 관련 화장법 등에 관한 정보 와 관심 브랜드와 행사 정보 등의 주요 토픽이 주를 이루고 있었다. 결과적으로 코로나 이후 색조화장품 구매자들은 적극적인 온라인 정보 검색을 통하여 제품 가치와 안전성, 가격 혜택, 매장 정보 등의 구매 정 보에 더욱 민감하게 될 것이므로 이에 대한 대응전략이 요구된다.
        4,000원
        10.
        2023.07 구독 인증기관 무료, 개인회원 유료
        Non-fungible tokens (NFTs) exploded onto the global digital landscape in 2020, spurred by pandemic-related lockdowns and government stimulus (Ossinger, 2021). An NFT is a unit of data stored on a blockchain that represents or authenticates digital or physical items (Nadini, 2021). Since it resides on a blockchain, NFTs carry the benefits of decentralization, anti-tampering, and traceability (Joy et al., 2022). Fashion brands quickly capitalized on these features, launching fashion NFT collections and garnering significant profits from the sale of fashion NFTs in 2021 (Zhao, 2021). For example, Nike’s December 2021 acquisition of RTFKT (pronounced “artifact”) resulted in USD 185 million in sales less than a year after their acquisition (Marr, 2022).
        4,000원
        11.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims to analyze research trends regarding outdoor wear. For this purpose, the data-collection period was limited to January 2002–October 2022, and the collection consisted of titles of papers, academic names, abstracts, and publication years from the Research Information Sharing Service (RISS). Frequency analysis was conducted on 227 papers in total to check academic journals and annual trends, and LDA topic-modeling analysis was conducted using 20,964 tokens. Data pre-processing was performed prior to topic-modeling analysis; after that, topic-modeling analysis, core topic derivation, and visualization were performed using a Python algorithm. A total of eight topics were obtained from the comprehensive analysis: experiential marketing and lifestyle, property and evaluation of outdoor wear, design and patterns of outdoor wear, outdoor-wear purchase behavior, color, designs and materials of outdoor wear, promotional strategies for outdoor wear, purchase intention and satisfaction depending on the brand image of outdoor wear, differences in outdoor wear preferences by consumer group. The results of topic-modeling analysis revealed that the topic, which includes a study on the design and material of outdoor wear and the pattern of jackets related to the overall shape, was the highest at 30.9% of the total topics. The next highest topic was also the design and color of outdoor wear, indicating that design-related research was the main research topic in outdoor wear research. It is hoped that analyzing outdoor wear research will help comprehend the research conducted thus far and reveal future directions.
        5,100원
        12.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The forms and demands of language learning are changing in the pandemic era. Learners no longer rely solely on a formal language curriculum. Instead, they are using various informal language learning (ILL) channels. Although informal language learning has been in the spotlight and is growing, more research on ILL is needed. In this study, ILL taking place through an online community was analyzed. Articles from the Korean learning community (r/Korean in Reddit) were collected, and the topic modeling technique, Latent Dirichlet Allocation, was conducted on the collected data. As a result, seven major topics were selected. The most common topics in all posts were issues faced by beginner learners, followed by vocabulary and sentence meanings, interest in Chinese characters and applications of Korean language skills, culture and daily life, translation, online learning materials, and Korean phonics. Through this, the interests of ILL learners and the characteristics of learners could be identified. Due to the nature of ILL, in which a formal curriculum does not exist, it was found that questions about general strategies for learning and questions that could not be solved in formal language education were most prominent. In addition, the characteristics of ILL learners who actively sought learning content and materials were also found.
        6,100원
        13.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Topic modeling has been receiving much attention in academic disciplines in recent years. Topic modeling is one of the applications in machine learning and natural language processing. It is a statistical modeling procedure to discover topics in the collection of documents. Recently, there have been many attempts to find out topics in diverse fields of academic research. Although the first Department of Industrial Engineering (I.E.) was established in Hanyang university in 1958, Korean Institute of Industrial Engineers (KIIE) which is truly the most academic society was first founded to contribute to research for I.E. and promote industrial techniques in 1974. Korean Society of Industrial and Systems Engineering (KSIE) was established four years later. However, the research topics for KSIE journal have not been deeply examined up until now. Using topic modeling algorithms, we cautiously aim to detect the research topics of KSIE journal for the first half of the society history, from 1978 to 1999. We made use of titles and abstracts in research papers to find out topics in KSIE journal by conducting four algorithms, LSA, HDP, LDA, and LDA Mallet. Topic analysis results obtained by the algorithms were compared. We tried to show the whole procedure of topic analysis in detail for further practical use in future. We employed visualization techniques by using analysis result obtained from LDA. As a result of thorough analysis of topic modeling, eight major research topics were discovered including Production/Logistics/Inventory, Reliability, Quality, Probability/Statistics, Management Engineering/Industry, Engineering Economy, Human Factor/Safety/Computer/Information Technology, and Heuristics/Optimization.
        4,800원
        14.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As interest in the sustainable fashion industry continues to increase along with climate issues, it is necessary to identify research trends in sustainable fashion and seek new development directions. Therefore, this study aims to analyze research trends on sustainable fashion. For this purpose, related papers were collected from the KCI (Korean Citation Index) and Scopus, and 340 articles were used for the study. The collected data went through data transformation, data preprocessing, topic modeling analysis, core topic derivation, and visualization through a Python algorithm. A total of eight topics were obtained from the comprehensive analysis: consumer clothing consumption behavior and environment, upcycle product development, product types by environmental approach, ESG business activities, materials and material development, process-based approach, lifestyle and consumer experience, and brand strategy. Topics were related to consumption, production, and education of sustainable fashion, respectively. KCI analysis results and Scopus analysis results derived eight topics but showed differences from the comprehensive analysis results. This study provides primary data for exploring various themes of sustainable fashion. It is significant in that the data were analyzed based on probability using a research method that excluded the subjective value of the researcher. It is recommended that follow-up studies be conducted to examine social trends.
        4,900원
        15.
        2021.08 구독 인증기관 무료, 개인회원 유료
        This study aimed to explore research trends of nursing ethics in Korea applying text network analysis and topic modelling. 306 articles published in KCI journals from 1998 to 2021 were identified and 516 author-provided keywords were collected. A co-occurrence matrix with 123 keywords, which appeared at least in two articles, were developed based on the Jaccard coefficient. Degree centrality and betweenness centrality were calculated and LDA topic modelling were performed using NetMiner software. The largest number of the articles (70, 23%) were published in Korean Journal of Medical Ethics. The most critical core-keywords, defined as the top 30 keywords in degree centrality and betweenness centrality, were ‘nursing students’ and ‘moral sensitivity’. The other core-keywords included ‘attitude,’ ‘awareness,’ ‘professionalism,’ ‘knowledge,’ and ‘critical thinking.’ related to ethical competence, ‘death,’ ‘hospice,’ ‘euthanasia,’ and ‘research ethics’ related to bioethical issues, and ‘job satisfaction,’ ‘burn out,’ ‘stress,’ ‘organizational culture,’ ‘ethical leadership,’ and ‘ethical climate’ related to organization and leadership. Five topics were identified and named as a) bioethics education for nursing students, b) knowledge and attitudes for bioethical issues, c) awareness and values of bioethics, d) ethical conflicts of RNs, and e) nursing ethics education. This study found that bioethics was the main topics in Korean nursing ethics research and suggested nursing research should focus on ethical issues RNs frequently experience in patient care. Also, research gaps were inferred in multiple topics including nurse-to-nurse relationships, theoretical perspectives of virtue ethics and care ethics, or witnessing healthcare professionals’ unethical behavior.
        4,000원
        16.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The interest in text mining is recently increasing in the humanities and social sciences. Using a topic-modeling technique, this study analyzed a corpus of study abroad applications to explore a discursive field of study abroad. By doing so, this project finds the ways in which the new text analysis technique can contribute to the methodology of discourse analysis. For this purpose, 4,585 applications for a variety of undergraduate study-abroad programs were collected and sorted out into the corpora of successful and unsuccessful applications. The topic-modeling results show that generated topics generally match the discourses and themes that the existing research of study abroad have considered so far. The comparison of the results between successful and unsuccessful applications reveals that the former tends to exhibit a set of more clearly defined topics and use abstract and generalized words to describe actions engaging with study abroad. This study suggests that the topic-modeling technique can be a useful discourse-analytic tool as it helps understand a broad thematic and discursive terrain in a large size of textual data. This paper also discusses how traditional discourse analysis methods can contribute to addressing methodological limitations in text mining techniques.
        8,400원
        17.
        2019.06 KCI 등재 구독 인증기관·개인회원 무료
        이 연구는 토픽 모델링의 LDA(Latent Dirichlet Allocation) 기법을 적용해 언론에 보도된 테러리즘 관련 뉴스 기사의 주요 토픽(topic)을 분석하였다. 이를 위해 지난 2014년 6월부터 2019년 5월 중, 미디어에 보도된 뉴스 중에서 테러리즘을 소재로 다룬 36,436건을 대상으로 토픽 을 추출하고, 주요 흐름을 시기별(모술탈환 이전, 모술탈환 과정, 모술탈 환 이후)로 구분하여 분석하였다. 이 연구에서 모술탈환 작전을 주요 분 석 시점으로 정한 것은 국제 테러리즘의 확산과 파급력이라는 측면에서 중요한 키워드가 ISIS(이슬람국가)이고, ISIS 세력의 확장, 축소, 다변화 등과 관련된 주요 사건이 모술탈환 작전이라고 여겼기 때문이다. 연구 방법적으로는 테러리즘과 관련한 방대한 양의 기사 내용을 정량 적으로 분석할 수 있고, 내용적으로는 주요 토픽을 파악함으로써 테러리 즘 기사의 이슈와 정책 이슈와의 관련성을 논의할 수 있는 토픽 모델링 분석을 실시하였다. 이상의 결과는 테러리즘에 대한 주제를 단어 중심으 로 범주화함으로써 관련 연구의 분석 기준을 마련할 수 있으며, 정책적 으로는 관련 이슈에 대한 언론 보도 토픽의 경향성을 파악함으로써 국제 테러리즘 발생에 대한 이해를 기반으로 정책 수립의 방향성을 제시할 수 있을 것이다. 이 연구는 선행연구에서 주요하게 다루지 않았던 테러리즘의 양상과 관련된 뉴스 기사의 주제적 특징을 객관적으로 도출함으로써, 시기별로 중심 주제가 어떻게 변화되고 있는지를 분석하였으며, 이를 통해 우리 사회에서 바라보고 있는 테러리즘 실태와 동향을 살펴보고자 하였다. 이 를 토대로 테러리즘 관련 언론보도의 주요 토픽과 테러리즘 관련 언론보 도 기사에서 모술작전 전후 시기별로 주요 토픽은 어떠한 변화 추이를 보이고 있는지에 대한 함의점을 도출할 수 있었다.
        18.
        2019.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As many existing research fields are matured academically, researchers have encountered numbers of academic, social and other problems that cannot be addressed by internal knowledge and methodologies of existing disciplines. Earlier, pioneers of researchers thus are following a new paradigm that breaks the boundaries between the prior disciplines, fuses them and seeks new approaches. Moreover, developed countries including Korea are actively supporting and fostering the convergence research at the national level. Nevertheless, there is insufficient research to analyze convergence trends in national R&D support projects and what kind of content the projects mainly deal with. This study, therefore, collected and preprocessed the research proposal data of National Research Foundation of Korea, transforming the proposal documents to term-frequency matrices. Based on the matrices, this study derived detailed research topics through Latent Dirichlet Allocation, a kind of topic modeling algorithm. Next, this study identified the research topics each proposal mainly deals with, visualized the convergence relationships, and quantitatively analyze them. Specifically, this study analyzed the centralities of the detailed research topics to derive clues about the convergence of the near future, in addition to visualizing the convergence relationship and analyzing time-varying number of research proposals per each topic. The results of this study can provide specific insights on the research direction to researchers and monitor domestic convergence R&D trends by year.
        4,500원
        19.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this study is to identify the research trend in the field of indoor environment in Korea. We collected 419 papers published in the Journal of the Korean Society for indoor environment between 2004 and 2018, and attempted to produce datasets using a topic modeling technique, Latent Dirichlet Allocation(LDA). The result of topic modeling showed that 8 topics (“VOCs investigation”, “Subway environment”, “Building thermal environment”, “School health”, “Building particulate matter”, “Asbestos risk”, “Radon risk”, “Air cleaner and treatment”) could be extracted using Gibbs sampling method. In terms of topic trends, investigation of volatile organic compounds, subway environment, school health, and building particulate matter showed a decreasing tendency, while the building thermal environment, asbestos risk, radon risk, air cleaners, and air treatment showed an increasing tendency. The results of this topic modeling could help us to understand current trends related indoor environment, and provide valuable information in developing future research and policy frameworks.
        4,000원
        20.
        2018.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        빅데이터 분석을 통한 기업 경영환경에 대한 이해와 통찰을 구하고자 하는 요구가 산업 및 기업 경영 전반에 증가하고 있다. 이러한 사회적 요구에 따라 산업의 이해와 기업 경영의 이해를 위하여 기업의 경영실적 및 향후 계획을 포괄적으로 담고 있는 기업공시정보를 활용한 연구가 주목을 받고 있다. 이러한 기업공시정보는 대표적인 비정형 데이터로써 텍스트마이닝 방법론을 적용하여 그 범위와 수준에 대한 다양한 접근을 통하여 산업 수준 및 기업 수준에서 다양한 활용이 가능하다. 그러나 아직은 이러한 기업공시자료를 활용한 산업 및 기업 레벨에서 적용가능한 수준의 분석모델이 부족한 것으로 파악된다. 따라서 본 연구에서는 실제 활용 가능한 공개데이터를 활용한 산업 및 기업 수준의 분석모델을 제안하고자 한다. 미국상장기업의 공시자료인 미국 SEC EDGAR 자료를 기반으로 텍스트마이닝 알고리즘을 적용하여 산업 및 기업 수준의 경영주제(토픽)에 대한 추이분석이 가능한 모델을 제안하고자한다. SEC EDGAR의 10-K 문서를 대상으로 LDA 토픽 모델링을 통하여 산업 수준에서 전체 산업의 주제분야 분류를 파악하였고, 산업간 비교 측면에서 소프트웨어 산업과 하드웨어 산업 분야의 사례를 통해 최근 20년간의 토픽추이를 비교분석 하였다. 또한 최근 20년간의 기업의 경영주제 변화를 소프트웨어 산업에 속한 2개 기업을 중심으로 살펴보았다. 이를 통해 산업 및 기업 수준에서의 경영주제의 추이 변화를 파악하여 쇠퇴 및 성장 추세에 있는 경영주제를 확인 할 수 있었다. 한편 word2vec 워드 임베딩 모델과 주성분분석을 통한 차원 축약을 통해 소프트웨어 산업분야의 기업 및 특정 제품(혹은 서비스)에 대한 매핑을 통해 유사한 경영주제(토픽)를 가지는 기업 및 제품(서비스)을 사례를 통해 파악하였으며, 이를 시간적 흐름에 따른 변화 양상도 관찰할 수 있었다. 본 연구의 목적이 공개데이터를 활용한 산업 및 기업 수준의 분석모델을 개발하기 위한 방법론을 제안한 측면에서, 해외 데이터를 사용하여 산업의 경영주제 변화 추이, 기업의 경영주제 변화 추이를 거시적으로 조망할 수 있는 실무적인 방법론의 제안에서 의의가 있을 수 있다. 한편 기업의 기술경영전략 측면에서 기업의 경영토픽의 잦은 변화, 경영주제의 변화의 속도 등 다양한 변화 양상의 차이에 따른 기업의 매출 등의 경영성과와의 연관성 분석, 실제 기업의 제품포트폴리오의 구성에 따른 기업 간의 경쟁상황 등을 파악하는 미시적 모델 제안을 위한 추가 연구가 요구된다.
        8,100원
        1 2