Background: Most patients with chronic stroke have difficulty walking, and various exercise methods are used clinically to improve the disability. Among them, various methods are being applied to improve walking through torso movement. Objectives: This study was conducted to determine the effect of Maitland vertebra joint mobilization exercise and Evjenth trunk muscle stretching exercise on the walking ability of patients with hemiparesis due to chronic stroke. Design: A randomized controlled trial. Methods: In this study, 30 chronic stroke patients with hemiplegia were divided into 15 patients in the Maitland vertebra joint mobilization group (MVJMG) and 15 in the Evjenth trunk muscle stretching exercise group (ETMSEG), and the intervention was conducted for 3 weeks, 5 times a week, 30 minutes a day. After the intervention, walking ability was measured using a gait analyzer. Results: In terms of walking ability, there was a significant increase in walking rate, walking speed, and stride length following the intervention in both the MVJMG and ETMSEG groups (P<.05). When comparing the difference in walking ability between the two groups, there was no significant difference in walking rate. Conclusion: The study found that both Maitland vertebra joint mobilization and Evjenth trunk muscle stretching exercises were effective for improving walking function in chronic stroke patients. However, there was no significant difference in effectiveness between the two interventions.
Background: The Trunk Stabilization Exercise and Respiratory Muscle Exercise may help address the complex biomechanical and neuromuscular issues that contribute to shoulder joint disorders and can help improve patient outcomes in terms of pain relief, range of motion, and functional ability. Objectives: To investigated the effects of conventional physical therapy, trunk stabilization exercise, and respiratory muscle exercise, on the Range of Motion (ROM), ULF and balance in patients with shoulder joint disorder. Design: A randomized controlled trial. Methods: This study randomly allocated 18 subjects to the control group, 19 to the trunk stabilization exercise group, and 19 to the respiratory muscle exercise group, while all interventions were performed five times a week for four weeks. The result measurement involved the ROM, the upper limb function test (ULT), and balance tests. Results: The respiratory muscles exercise group indicated significant improvement in ROM and balance tests than the trunk stabilization exercise group and control group. Conclusion: The respiratory muscle exercise is a more effective way to improve ROM and balance ability than trunk stabilization exercise for patients with shoulder joint disorder.
Background: Inspiratory muscle training can improve inspiratory strength and endurance through threshold loading. In addition, trunk stabilization exercises can improve trunk strength and respiratory function.
Objectives: The purpose of this study is to investigate the effect of application of inspiratory muscle training and trunk stabilization exercise on pulmonary function and inspiratory muscle activation in college students.
Design: Randomized controlled trials.
Methods: In this study, 24 college students were randomly divided into two groups: inspiratory muscle training and trunk stabilization exercise (experimental group, n=12), and trunk stabilization exercise (control group, n=12). Inspiratory muscle activity was measured using a surface electromyography. Pulmonary function was measured using a spirometer and a peak expiratory flow meter.
Results: In the experimental group, the muscle activity of both upper trapezius and latissimus dorsi muscles increased significantly after the intervention. In the experimental group, both upper trapezius muscle activity was significantly increased than in the control group. In the experimental group, all the pulmonary function significantly increased after the intervention. Conclusion: In this study, when the inspiratory muscle training was additionally applied to the trunk stabilization exercise in college students in their twenty, it was possible to improve the inspiratory muscle activity and pulmonary function.
Background: Bird dog exercise (BDE) is one of the lumbar stabilization exercises that rehabilitate low back pain by co-contraction of the local and global muscles. Previous studies have reported the effect of various type of BDEs (for example, practicing the exercises on various surfaces and changing the limb movement) for muscle co-contraction.
Objects: This study aimed to investigate the effect of knee joint flexion position of the raised lower limb on abdominal and back muscle activity during BDE in patients with chronic low back pain (CLBP).
Methods: Thirteen males participated in this study (age: 32.54 ± 4.48 years, height: 177.38 ± 7.17 cm). Surface electromyographic (SEMG) data of the internal abdominal oblique (IO), external abdominal oblique (EO), lumbar multifidus (MF), and thoracic part of the iliocostalis lumborum (ICLT) were collected in two knee joint flexion positions (90° flexion versus 0° flexion) during BDE. The SEMG data were expressed as a percentage of root mean square mean values obtained in the maximal voluntary isometric contraction.
Results: Greater muscle activity of the IO (p = 0.001), MF (p = 0.009), and ICLT (p = 0.021) of the raised lower limb side and the EO (p = 0.001) and MF (p = 0.009) of the contralateral side were demonstrated in the knee joint flexion position compared to the knee joint extension position. Greater local/global activity ratios of the abdominal muscle (i.e., IO and EO) of the raised lower limb (p = 0.002) and the back muscle (i.e., MF and ICLT) of the contralateral side (p = 0.028) were also noted in the knee joint flexion position.
Conclusion: BDE with a knee joint flexion position might be recommended as an alternative lumbar stabilization exercise to enhance muscle activity in both the raised lower limb and the contralateral sides of the trunk for individuals with CLBP
Background: Stroke patients have weak trunk muscle strength due to brain injury, so a single type of exercise is advised for restoring functionality. However, even after intervention, the problem still lies and it is suggested that another intervention method should be applied with exercise in order to deal with such problem.
Objectives: To Investigate the effect of bridge exercise combined with functional electrical stimulation (FES) on trunk muscle activity and balance in stroke patients.
Design: Randomized controlled trial.
Methods: From July to August 2020, twenty stroke patients was sampled, ten patients who mediated bridge exercises combined with functional electrical stimulation were assigned to experiment group I, and ten patients who mediated general bridge exercises were assigned to experiment groupⅡ. For the pre-test, using surface EMG were measured paralyzed rectus abdominis, erector spinae, transverse abdominis/internal oblique muscle activity, and using trunk impairment scale were measured balance. In order to find out immediate effect after intervention, post-test was measured immediately same way pre-test.
Results: Change in balance didn’t show significant difference within and between groups, but muscle activity of trunk was significant difference rectus abdominis and erector spinae within groups I (P<.01), also between groups was significant difference (P<.05).
Conclusion: Bridge exercise combined with FES could improve trunk function more effectively than general bridge exercise due to physiological effect of functional electrical stimulation.
Background: Although studies have been conducted on muscle thickness and balance in trunk stabilization exercise and exercise using vibration props, studies on trunk stabilization exercise using active vibration for spinal alignment are still insufficient to draw a conclusion.
Objectives: To investigate the effect of trunk stabilization exercise using active vibration on the spinal alignment in adult females.
Design: A randomized controlled trial.
Methods: Twenty-six adult females were randomly assigned to the experimental group (active vibration) and 13 control groups (active non-vibrating) and exercised three times a week for 8 weeks. Each group was measured for spinal alignment before exercise and 8 weeks after exercise. Spinal alignment, trunk imbalance, pelvic tilt, and pelvic torsion were measured using a spinal alignment analyzer.
Results: Trunk imbalance was a significantly different depending on the time in the experimental group and the control group (P<.05). Pelvic tilt was a significant difference between the groups (P<.05). Also, pelvic tilt was a significantly different depending on the time in the experimental group (P<.05), but the control group showed no significant difference (P>.05). Pelvic torsion was no significant difference in both groups (P>.05).
Conclusion: This study demonstrates that trunk stabilization exercise using active vibration has a positive effect on the alignment of the spine.
Background: Weakness of the abdominal and mid thoracic muscles the lead to thoracic kyphosis of stroke patients. The trunk muscles activity of stroke patients is significantly related to upper extremity.
Objectives: To investigate the effect of seated exercise of thoracic and abdominal muscles on upper extremity function and trunk muscles activity in stroke patients.
Design: One-group pretest-posttest design.
Methods: A total of 27 stroke patients were recruited. All stroke patient were given seated abdominal exercise (posterior pelvic tilt exercises) and thoracic exercise (postural-correction exercise). All exercises were conducted for 30 minutes, three times a week for four weeks. The manual function test (MFT) and electromyography (EMG) were measured, and EMG electrodes were attached to thoracic paraspinal muscles and lower rectus abdominal muscles. EMG signal is expressed as %RVC (reference voluntary contraction).
Results: Experimental group showed significant increases in abdominal muscles, paraspinal muscles activity and MFT total score, items of arm motion (forward elevation of the upper extremity, lateral elevation of the upper extremity, touch the occiput with the palm) in MFT after four weeks.
Conclusion: These results suggest that, in stroke patients, seated exercise of thoracic and abdominal muscles contribute to improve trunk muscles activity and upper extremity function in stroke patients.
Background: Weakness of the trunk muscles decreases the trunk control ability of stroke patients, which is significantly related to balance and gait. Objectives: To compare the impact of diagonal pattern self-exercise on an unstable surface and a stable surface for trunk rehabilitation on trunk control, balance, and gait ability in stroke patients. Design: Nonequivalent control group design. Methods: Twenty four participants were randomized into the experimental group (diagonal pattern self-exercise while sitting on an unstable surface, n=12) and the control group (diagonal pattern self-exercise while sitting on a stable surface, n=12). All interventions were conducted for 30 minutes, three times a week for four weeks, and the trunk impairment scale (TIS), berg balance scale (BBS), functional gait assessment (FGA), and G-walk were measured. Results: All groups indicated significant increases in all variables (TIS, BBS, FGA, cadence, speed, stride length) after four weeks. The TIS, BBS, FGA, cadence, gait speed, and stride length group-by-time were significantly different between the two groups. Conclusion: We found that, in stroke patients, diagonal pattern self-exercise on an unstable surface is a more effective method for improving trunk control, balance, and gait ability than diagonal pattern self-exercise on a stable surface.
Background: Limitations in hip flexion caused by tight hamstrings lead to excessive lumbar flexion and low back pain. Accordingly, many studies have examined how to stretch the hamstring muscle. However, no study has focused on the effect of hamstring eccentric exercise for tight hamstrings on trunk forward bending.
Objects: We compared the short-term effect of hamstring eccentric exercise (HEE) and hamstring static stretching (HSS) on trunk forward bending in individuals with tight hamstrings. Methods: Thirty individuals with tight hamstrings participated in the study. The subjects were randomly allocated to either a HEE or HSS group. To determine whether the hamstrings were tight, the active knee extension (AKE) test was performed, and the degree of hip flexion was measured. To assess trunk forward bending, subjects performed the fingertip to floor (FTF) and modified modified Schober tests, and the degree of trunk forward bending was measured using an inclinometer. We used paired t-tests to compare the values before and after exercise in each group and independent t-tests to compare the two groups on various measures
Results: The FTF test results were improved significantly after the exercise in both groups, and AKE for both legs increased significantly in both groups. There was no significant difference in the hip angles, mmS test results, or degree of trunk forward bending between groups after the exercise. No test results differed significantly between the two groups at baseline or after the exercise. Both groups increased hamstring flexibility and trunk forward bending.
Conclusion: HSS and the HEE groups increased hamstring flexibility and trunk forward bending. However, HEE has additional benefits, such as injury prevention and muscle strengthening.
Background: Breathing is the essential step of Pilates exercise and can be used to activate core muscles. Although the effects of breathing exercise on pain, breathing muscles, and cervical posture have been extensively studied, little is known about the impact of Pilates breathing on spinal posture and alignment.
Purpose: To determine the effect of 3D-Pilates breathing exercise on spinal curvature and alignment of healthy adults during corrected to normal alignment.
Design: One group pre-post test design Methods: Eighteen participants were given a 3D-pilates breathing exercise twice a week (20 minutes per session) for three weeks and warmed up for 10 minutes before each exercise session. To examine spinal curvature and alignment of each subject, this study used radiation free rasterstereography (Formetric Ⅲ, Germany). Paired t-test and Wilcoxon signed rank test were performed to determine the difference between pre and post exercise.
Results: There were statistically significant differences in height (p<.001), kyphosis angle (p<.05), trunk imbalance (p<.05), kyphotic apex (p<.01), cervical fleche (p<.05), pelvic tilt (p<.01), and lateral deviation (p<.05) between before and after 3D Pilates breathing exercise. However, there was no significant difference in lordosis angle.
Conclusions: The study results indicated that three week 3D-pilates breathing exercise program could be presented as an effective rehabilitation method for improving spinal curvature and alignment.
Background: Round shoulder posture, results from excessive flexed posture of the thorax, is defined as a position of scapular protraction, anterior tipping, and downward rotation. However, previous studies have focused on only passive position of the thorax during scapular posterior tilting (SPT) and have not reported on SPT combined with correction of flexed posture.
Objects: The aim of this study was to compare effects of SPT and SPT with prone trunk extension (SPT + PTE) on activities of the lower trapezius, serratus anterior, and thoracic erector spinae and degree of posture in subjects with round shoulder and flexed posture.
Methods: Fifteen subjects with round shoulder and flexed posture were recruited. The caliper was used to measure the degree of round shoulder and flexed posture. Electromyography was performed to collect data of muscle activities. Paired t-test was used to compare two exercise (α=.05).
Results: When SPT + PTE was applied, the degree of round shoulder posture (p=.001) and flexed posture (p=.039) significantly decreased compared with that when SPT was applied. The lower trapezius activity significantly increased in the SPT + PTE condition compared with that in the SPT condition (p=.026). There were no significant differences in serratus anterior activity between SPT + PTE and SPT. The thoracic erector spinae activity significantly increased in the SPT + PTE condition compared with that in the SPT condition (p=.014).
Conclusion: SPT + PTE might be one of the effective methods to enhance activities of lower trapezius and thoracic erector spinae, and to reduce round shoulder posture and flexed posture in subjects with round shoulder and flexed posture.
Background: Lumbopelvic stability is highly important for exercise therapy for patients with low back pain and shoulder dysfunction. It can be attained using a pelvic compression belt. Previous studies showed that external pelvic compression (EPC) enhances form closure by reducing sacroiliac joint laxity and selectively strengthens force closure and motor control by reducing the compensatory activity of the stabilizer. In addition, when the pelvic compression belt was placed directly on the anterior superior iliac spine, the laxity of the sacroiliac cephalic joint could be significantly reduced.
Objects: This study aimed to compare the effects of EPC on lumbopelvic and shoulder muscle surface electromyography (EMG) activities during push-up plus (PUP) and deadlift (DL) exercise, trunk extensor strength during DL exercise.
Methods: Thirty-eight subjects (21 men and 17 women) volunteered to participate in this study. The subjects were instructed to perform PUP and DL with and without the EPC. EMG data were collect from serratus anterior (SA), pectoralis major (PM), erector spinae (ES), and multifidus (MF). Trunk extensor strength were tested in DL exercise. The data were collected during 3 repetitions of all exercise and the mean of root mean square was used for analysis.
Results: The EMG activities of the SA and PM were significantly increased in PUP with pelvic compression as compared with PUP without pelvic compression (p<.05). In DL exercise, a significant improvement in trunk extensor strength was observed during DL exercise with pelvic compression (p<.05).
Conclusion: The results of this study indicate that lumbopelvic stabilization reinforced with external pelvic compression may be propitious to strengthen PUP in more-active SA and PM muscles. Applying EPC can improve the trunk extensor strength during DL exercise. Our study shows that EPC was beneficial to improve the PUP and DL exercise efficiency.
Background: Hemispatial neglect is defined as the failure to attend, report, respond, or orient toward meaningful stimuli provided in the contralateral side of a brain lesion. Objects: This study was conducted to find out the effect of dynamic trunk equilibirum exercise for stroke patients with hemi-spatial neglect. Methods: This study included 21 stroke subjects, randomly assigned to either the experimental group or the control group. The exercise program consisted of 5 sessions of 20 minutes per week during 4 weeks. The line-bisection test, the Albert test, the balance function score, the Berg balance scale, the postural assessment scale for stroke and the modified Barthel index were measured before and after training. All data were analyzed using SPSS 12.0 for Windows. Between-group and within-group comparison was analyzed by using Independent t-test and Paired t-test respectively. Results: The results of study were as follows: There were significant differences between before and after intervention in both group (p<.05). There were significant differences in the line-bisection test, Albert test, balance function score, Berg balance scale, postural assessment scale for stroke and modified Barthel index between the experimental group and the control group (p<.05). Conclusion: Dynamic trunk equilibrium exercise had a positive effect on patients’ neglect, balance ability and activities of daily living. Further studies are required to generalize the results of this study.
Background: Scapular downward rotation syndrome (SDRS) is a common scapular alignment impairment that causes insufficient upward rotation and muscle imbalance, shortened levator scapulae (LS) and rhomboid, and lengthened serratus anterior (SA) and trapezius. A modified shrug exercise (MSE), performing a shrug exercise with the shoulders at 150° abduction, is known as an effective exercise to increase scapular stabilizer muscle activation. Previous studies revealed that scapular exercise are more effective when combined with trunk stabilization exercises in decreasing scapular winging and increasing scapular stabilizer muscle activation. Objects: The purpose of our study was to clarify the effect of MSE with or without trunk stabilization exercises in subjects with SDRS. Methods: Eighteen volunteer subjects (male=10, female=8) with SDRS were recruited for this experiment. All subjects performed MSE under 3 different conditions: (1) MSE, (2) MSE with an abdominal draw-in maneuver (ADIM), and (3) MSE with an abdominal expansion maneuver (AEM). The muscle thickness of the lower trapezius (LT) and the SA were measured using an ultrasonography in each condition. Electromyography (EMG) data were collected from the LT, LS, SA, and upper trapezius (UT) muscle activities. Data were statistically analysed using one-way repeated analysis of variance at a significance level of .05. Results: The muscle thickness of the LT and the SA were the significant different in the MSE, MSE with ADIM (MSE+ADIM) and MSE with AEM (MSE+AEM) conditions (p<.05) In both LT and SA, the order of thick muscle thickness was MSE+AEM, MSE+ADIM, and MSE alone. No significant differences were found in the EMG activities of the SA, UT, LS, and LT in all condition. Conclusion: In conclusion, MSE is more beneficial to people with SDRS when combined with trunk stabilization exercises by increased thickness of scapular stabilizer muscles.
The purpose of this study is to identify the effects of two trunk stability exercise types on the gait factors of stroke patients. We randomly divided 24 old elderly patients with hemiplegia, who were hospitalized due to stroke, into a two groups, each with its own six-week exercise program: one that used of a dynamic trunk stability exercise using with physio-balls(n=12) and a group of one that used a static trunk stability exercise using on mats(n=12). After measuring the participants gait ability a sin a pre-test, we again measured their ability again as in a posttest after two-for both types of six-week exercise programs for each group. The analysis of the data analysis showed that both ball and mat exercise programs significantly improved the participants’ gait velocity and stride length; cadence, however, was significantly changed only by the ball exercise program. In conclusion, both types of trunk stability exercise may be useful in improving the gait ability of stroke patients, and, in particular, the former can be used as an exercise method that effectively significantly affects more various other gait factors.
This study examined the effects of trunk stabilization exercise on balance and trunk control in children with spastic diplegia. Four children with ambulatory spastic diplegia participated in the trunk stabilization exercise program using a Both Sides Utilized (BOSU) ball, 30 minutes a day, two times a week for eight weeks. Outcome variables included the pediatric balance scale, trunk control movement scale and multifidus thickness using ultrasound image. After trunk stabilization exercise, there was statistically no significant improvement in pediatric balance scale, trunk control movement scale and multifidus thickness. However, individual outcomes were observed with some positive changes. Balance, trunk control movement, and thickness of multifidus were found to be improved. Trunk stabilization exercise using a BOSU ball could improve trunk control and increase the thickness of multifidus in children with spastic diplegia. Further investigation is needed to evaluate subjects according to type of cerebral palsy and to understand the relationship between postural control and gait.
The purpose of this study is to verify a correlation between flexi-bar exercise and improvement of trunk strength and body composition in juvenile soccer players. The subjects were 11 teenager juvenile soccer players who conducted flexi-bar exercise half an hour daily three times a week for eight weeks. They were tested for trunk muscles strength, body composition and correlation. The result showed that trunk muscles strength improved significantly( p<.01) and weight, Rt. arm muscle mass, Rt. leg muscle mass, and Lt. leg muscle mass(p<.05), Lt. arm muscle mass, trunk muscle mass, and body muscle mass(p<.01) improved significantly as well while Lt. arm fat mass, Rt. leg fat mass, and Lt. leg fat mass decreased significantly(p<.05). In the correlation analysis, the more trunk muscle mass and trunk muscles strength increased, the more muscle mass of body regions increased, which was a positive correlation whereas fat mass of body regions decreased, which was a negative correlation. It was verified that there was a correlation between flexi-bar exercise and improvement of trunk muscles strength and body composition for juvenile soccer players.
Most patients with chronic low back pain experience functional disability of trunk muscle, and limitations in physical activity. While there are many types of exercise programs available, in recent years sling exercise has been emerging as the exercise program for spinal stabilization. It has been supported by a great amount of research with positive findings on its effectiveness. This research studies the effects of bridging exercise, conducted on a sling, on pain level and trunk muscle activation in supine, sidelying, and prone positions during a 4 weeks period. 10 healthy people(normal group, n=10) and 28 patients with low back pain participated in this study. 28 patients were divided into two groups; one group participated in exercise with the sling(experimental group, n=14) and the other group exercised without the sling(control group, n=14). They were asked to use the Numerical Rating Scale(NRS) to answer to the level of their pain they felt (no pain: 0 point, severe pain: 10 points). During sling bridging exercises, the muscle activity level in each muscle measured in each position was standardized as three seconds of EMG signals during five seconds MVIC. In conclusion, the experimental group with four weeks of sling bridging exercise experienced a statistically significant reduction in the pain level(p<.05) and increase in the muscle activities of erector spinae when in supine position, internal oblique when in sidelying position, and rectus abdominis in prone position(p<.05). Regular sling bridging exercise reduces the low back pain and enhances other trunk muscle activation, thereby positively affect spinal stabilization.
The aim of this study is to compare measurements of abdominal muscle thickness using ultrasonography imaging (USI) to those using a special transducer head device, during five different trunk stabilization exercises, ultimately to determine which exercise led to the greatest muscle thickness. Thirty eight healthy subjects participated in this cross-sectional study. The five types of trunk stabilization - i.e., a sit-up on the supine, an upper and lower extremity raise with quadruped on the prone, a leg raise in sitting on the ball, trunk rolling on the ball, and balance using sling on the prone position - were each performed with an abdominal draw. The thickness of the abdominal muscle - including the transverse abdominal (TrA), internal oblique (IO), and external oblique (EO) - was measured by USI with a special transducer head device, at rest and then at contraction in each position. Data were analyzed using one-way repeated ANOVA with the level of significance set at =.05. The results were as follows: 1) the TrA thickness was statistically significant (p<.05), whereas the IO and EO thicknesses were not (p>.05); 2) among the five types of trunk stabilization, TrA thickness significantly increased with the balance using a sling in the prone position, (p<.05), whereas no significant difference was noted for the four types of trunk stabilization (p>.05); 3) reliability data showed that there was a high degree of consistency among the measurements taken using the special transducer head device (ICC=.92). In conclusion, the balance using a sling in the prone position was more effective than any of the four other types of trunk stabilization in increasing TrA thickness in healthy subjects.
This study was to investigate the positive effects of specially designed trunk-stabilization exercise program on lower extremity balance of elderly with history of leprosy. In this participants, lower extremity functions has been undermined by the development of damage in peripheral nerves. A total of 40 elderly with history of leprosy were divided into 2 groups of equal size (): a group that participated in the exercise program, and a control group that did not exercise but did continue to engage in normal daily activities (including walking). The exercise group exercised for 60 minutes 2 days a week for 12 weeks. Static balance ability was measured by asking study participants to a one leg standing test: dynamic balancing ability was measured with a tandem walking test and a timed up-and-go test. The participants in the exercise program and the control group were tested before and after completion of the exercise program for comparison, and then divided according to their ability to feel sensory in the soles of their feet into the categories of normal sensory group: group with sensory loss in one foot: and group with sensory loss in both feet. The participants in the exercise program showed a positive, statistically significant difference in static balance compared with the control group (p<.05) as measured using the one leg standing test. Similarly, the participants in dynamic balance (p<.05) as measured using the tandem walking and timed up-and-go tests. Finally, these improvements were related to the severity of sensory loss in the soles of the feet for all study participants.