In this study, we investigated the microstructure and piezoelectric properties of 0.96(K0.456Na0.536)Nb0.95Sb0.05-0.04 Bi0.5(Na0.82K0.18)0.5ZrO3 (KNNS-BNKZ) ceramics based on one-step and two-step sintering processes. One-step sintering led to significant abnormal grain (AG) growth at temperatures above 1,085 °C. With increasing sintering temperature, piezoelectric and dielectric properties were enhanced, resulting in a high d33 = 506 pC/N for one-step specimen sintered at 1,100 °C (one-step 1,100 °C specimen). However, for one-step 1,115 °C specimen, a slight decrease in d33 was observed, emphasizing the importance of a high tetragonal (T) phase fraction for superior piezoelectric properties. Achieving a relative density above 84 % for samples sintered by the one-step sintering process was challenging. Conversely, two-step sintering significantly improved the relative density of KNNS-BNKZ ceramics up to 96 %, attributed to the control of AG nucleation in the first step and grain growth rate control in the second step. The quantity of AG nucleation was affected by the duration of the first step, determining the final microstructure. Despite having a lower T phase fraction than that of the one-step 1,100 °C specimen, the two-step specimen exhibited higher piezoelectric coefficients (d33 = 574 pC/N and kp = 0.5) than those of the one-step 1,100 °C specimen due to its higher relative density. Performance evaluation of magnetoelectric composite devices composed of one-step and twostep specimens showed that despite having a higher g33, the magnetoelectric composite with the one-step 1,100 °C specimen exhibited the lowest magnetoelectric voltage coefficient, due to its lowest kp. This study highlights the essential role of phase fraction and relative density in enhancing the performance of piezoelectric materials and devices, showcasing the effectiveness of the two-step sintering process for controlling the microstructure of ceramic materials containing volatile elements.
Various disposal methods for spent nuclear fuels (SNFs) are being researched, and one of these methods involves separating high heat-generating nuclear isotopes such as Strontium-90 (90Sr) and Cesium-137 (137Cs) for deep disposal. These isotopes has relatively short half-lives and substantial decay energies. Especially, 90Sr undergoes decay through Yttrium-90 to Zirconium-90, emitting intense heat with beta radiation. Therefore, the removal of these high heat-generating isotopes will significantly contribute to reducing disposal site area. To remove 90Sr from SNFs, molten salt was utilized in KAERI. During this process, it was discovered that 90Sr dissolves in the molten salt in the form of SrCl2 and/or Sr4OCl6. Afterwards, it is crucial to recover 90Sr in the form of oxide from the salt to create immobilized forms for disposal. This can be achieved by reactive distillation with K2CO3. However, the amount of 90Sr within the SNFs is only 0.121wt%, and even if all the 90Sr in the SNFs were to leach into the molten salt, the quantity of 90Sr in the molten slat would still be very small. Therefore, adding K2CO3 to the molten salt for reactive distillation could result in significant possibilities of side reactions occurring. In this study, a two-step process was employed to mitigate the side reactions: the 1st step involves evaporating the all molten salts and the 2nd step includes adding K2CO3 to make oxides through solid-solid reaction. Eutectic LiCl-KCl, which is the most commonly used salt, was employed. The eutectic LiCl-KCl with SrCl2 was heated at 850°C for 2 h to evaporate the salts under a vacuum (> 0.02 torr). However, after examining the distillation product before the solid-solid reaction, it was observed that SrCl2 reacted with KCl in the salt, resulting in the formation of KSr2Cl5. It means that salts containing KCl are not suitable candidates for reactive distillation aimed at producing immobilized forms. As an alternative, MgCl2 could be a highly promising candidate because it is inert to SrCl2 and according to a recent study in KAERI, MgCl2 exhibited the most efficient separation of Sr among various salts. Therefore, we plan to proceed with the two-step reactive distillation using MgCl2 for the future work.
It has been investigated on the management of the nuclides in KAERI. Strontium-90 is a high heatgenerating nuclide in spent nuclear fuel. It is needed to separate the salt from the salt solution for the recovery of strontium after the chlorination of the strontium oxide in molten salt. A vacuum distillation technology was used for the separation of strontium from the molten salt. It was investigated on operating conditions of reactive distillation process for the recovery of the strontium from the salt solution. At a reduced pressure, considerable amount of the carbonation agents such as K2CO3 and Li2CO3 were reduced during heating in the distiller due to the thermal decomposition. Therefore, the two step process was proposed, which is composed of a reaction step at an atmospheric pressure and a salt distillation step at a reduced pressure. In the reaction step, the condition of low temperature and high pressure is suitable to suppress the decomposition of the carbonation agent. In the salt distillation step, reduced pressure is preferable at a suitable temperature depending on the evaporation rate of the salt.
Carbon nanotube fiber is a promising material in electrical and electronic applications, such as, wires, cables, batteries, and supercapacitors. But the problem of joining carbon nanotube fiber is a main obstacle for its practical development. Since the traditional joining methods are unsuitable because of low efficiency or damage to the fiber structure, new methods are urgently required. In this study, the joining between carbon nanotube fiber was realized by deposited nickel–copper doublelayer metal via a meniscus-confined localized electrochemical deposition process. The microstructures of the double-layer metal joints under different deposition voltages were observed and studied. It turned out that a complete and defect-free joint could be fabricated under a suitable voltage of 5.25 V. The images of the joint cross section and interface between deposited metal and fiber indicated that the fiber structure remained unaffected by the deposited metal, and the introduction of nickel improved interface bonding of double-layer metal joint with fiber than copper joint. The electrical and mechanical properties of the joined fibers under different deposition voltages were studied. The results show that the introduction of nickel significantly improved the electrical and mechanical properties of the joined fiber. Under a suitable deposition voltage, the resistance of the joined fiber was 37.7% of the original fiber, and the bearing capacity of the joined fiber was no less than the original fiber. Under optimized condition, the fracture mode of the joined fibers was plastic fiber fracture.
Background: Considering the kinetic chain of the lower extremity, a pronated foot position (PFP) can affect malalignment of the lower extremity, such as a dynamic knee valgus (DKV). Although the DKV during several single-leg movement tests has been investigated, no studies have compared the differences in DKV during a single-leg step down (SLSD) between subjects with and without PFP.
Objects: The purpose of this study was to compare the DKV during SLSD between subjects with and without PFP.
Methods: Twelve subjects with PFP (9 men, 3 women) and 15 subjects without PFP (12 men, 3 women) participated in this study. To calculate the DKV, frontal plane projection angle (FPPA), knee-in distance (KID), and hip-out distance (HOD) during SLSD were analyzed by twodimensional video analysis software (Kinovea).
Results: The FPPA was significantly lower in PFP group, compared with control group (166.4° ± 7.5° and 174.5° ± 5.5°, p < 0.05). Also, the KID was significantly greater in PFP group, compared with control group (12.7 ± 3.9 cm and 7.3 ± 2.4 cm, p < 0.05). However, the HOD not significantly differed between two groups (12.7 ± 1.7 cm and 11.4 ± 2.5 cm, p > 0.05).
Conclusion: The PFP is associated with lower FPPA and greater KID. When assess the DKV during SLSD, the PFP should be considered as a crucial factor for occurrence of DKV.
Petroleum-based impregnating pitches were prepared from pyrolysis fuel oil (PFO) using a two-step heat treatment without a separation process. The pressurized heat treatment, the first step, was used to improve the properties of the pitches and enhance the product yield by promoting the cracking and polymerization of the components in the PFO. An atmospheric heat treatment as the second step was used only to synthesize the impregnating pitches from the liquid pitches prepared during the first step. The prepared impregnating pitches had the properties of a commercial petroleum-based impregnating pitch. The impregnation performance was evaluated by HT-XRD and an impregnation test. The HT-XRD results showed changes in the stacked structure of the pitches at the impregnation temperature. The bulk density of the carbon block was increased to 14.3% and the porosity was reduced by 10.3% after the impregnation/recarbonization process. The high reaction temperature during the first step induced the formation of quinoline insoluble (QI) components during the second step of the treatment, and the QI components adversely affected the impregnation process.
We propose a speedy two-step deposit process to form an Au electrode on hole transport layer(HTL) without any damage using a general thermal evaporator in a perovskite solar cell(PSC). An Au electrode with a thickness of 70 nm was prepared with one-step and two-step processes using a general thermal evaporator with a 30 cm source-substrate distance and 6.0 × 10−6 torr vacuum. The one-step process deposits the Au film with the desirable thickness through a source power of 60 and 100 W at a time. The two-step process deposits a 7 nm-thick buffer layer with source power of 60, 70, and 80 W, and then deposits the remaining film thickness at higher source power of 80, 90, and 100W. The photovoltaic properties and microstructure of these PSC devices with a glass/FTO/TiO2/perovskite/ HTL/Au electrode were measured by a solar simulator and field emission scanning electron microscope. The one-step process showed a low depo-temperature of 88.5 oC with a long deposition time of 90 minutes at 60 W. It showed a high depo-temperature of 135.4 oC with a short deposition time of 8 minutes at 100 W. All the samples showed an ECE lower than 2.8% due to damage on the HTL. The two-step process offered an ECE higher than 6.25% without HTL damage through a deposition temperature lower than 88 oC and a short deposition time within 20 minutes in general. Therefore, the proposed two-step process is favorable to produce an Au electrode layer for the PSC device with a general thermal evaporator.
감의 활용가치를 높이고 기능성 발효음료를 개발하기 위한 기초연구를 하고자 대봉감(Diospyros kaki Thunberg cv. Daebong), 선사환(Diospyros kaki Thunberg cv. Sunsawhan), 흑시떫은감(Diospyros kaki Thunberg cv. Heuksi-Astringent), 흑시단감(Diospyros kaki Thunberg cv. Heuksi-Sweet)을 이용하여 단행복발효 공정으로 감식초를 제조하였다. 감주스의 수득량을 높이기 위해 0.4% pectinase를 4시간동안 처리 후, 종배양한 주모(Saccharomyces cerevisiae KCCM 11215)를 접종하였다. 알코올 발효 4일째 대봉감주스로부터 8.0±0.00%의 알코올이 생성되었으며, 선사환주스, 흑시떫은감주스, 흑시 단감주스는 대봉감주스에 비해 다소 지연되어 발효 8일이 경과하면서 각각 8.0±0.05%, 8.0±0.00%, 및 6.2±0.05%의 알코올이 생성되었다. 제조된 감와인의 알코올 함유량을 6.0%로 조정 후, 종배양한 종초(Acetobacter pasterianus A8)를 5% 부피비율로 접종하여 30℃에서 정치 발효시켜 2일 간격으로 시료를 채취하여 분석하였으며, 발효 24일에 총산은 대봉감식초가 5.78±0.05%, 선사환식초는 5.25±0.04%, 흑시떫은감식초는 4.76±0.04%, 흑시단감식초는 5.23±0.03%로 나타났다. 또한 감식초 에서 catechin, epigallocatechin gallate, epicatechin, epigallocatechin 등 각종 카테킨이 검출되었 으며, 발효단계에 따라 epigallocatechin gallate와 epicatechin gallate의 증가가 현저하였으며, epicatechin은 소멸되기도 하였다. 흑시떫은감식초의 유리 phenolics 함량은 초산발효 전 감와인에 비해 유의적으로 감소하여 566.2±23mg/L 수준이었고, 그외의 감식초에서는 감소하여 대봉감식초 277.0±15.6mg/L, 선사환식초 264.4±15.7mg/L, 흑시단감식초 263.0±18.6mg/L이 검출되었다. 품종 별 감식초의 DPPH 라디칼 소거활성은 시료에 함유되어 있는 유리 phenolics 함량에 비례하여 높았으며, 흑시떫은감식초 94.67±1.4%, 대봉감식초 47.28±1.07%, 흑시단감식초 46.98±1.3%, 선사환식초 37.22±1.25% 순으로 높은 것으로 나타났다. 이상의 연구결과로부터 몇몇 품종의 감식초 제조가 가능 하게 되었으며, 특히 흑시떫은감식초는 유리 phenolics 함량이 다른 감식초에 비해 2배 이상 높아 이에 따른 항산화활성도 우수하였다. 따라서 본 연구에서 개발된 감식초는 조리용은 물론 기능성 음료로서 이용이 가능할 것으로 생각된다.
당근을 소재로 한 기능성 발효음료 개발을 위한 기초연구의 하나로 당근주스에 당을 첨가하고 Saccharomyces cerevisiae KCCM 11215를 접종하여 알코올발효를 진행시켜 당근와인을 제조한 후, 종초 Acetobacter pasterianus A8을 접종하여 초산발효를 유도하는 단행복발효 공정으로 정치 배양하여 당근식초 발효를 시도하였다. 6%의 알코올을 함유하는 당근와인에 종초를 5% 부피비율로 접종하고 30℃에서 20일간 정치 배양하는 것을 최적조건으로 하였을 때 산도 6.2%의 당근식초 제조가 가능하였다. 생산된 당근식초는 122.47mg%의 유리아미노산을 함유하고 있었으며, 당근식초의 유기산 조성은 aceticacid 55g/L, pyruvic acid 4.5g/L, citric acid 0.45g/L 및 maleic acid 0.05g/L이었다. 당근식초는 1.43mg/L의 베타-카로틴을 함유하고 있었으며 몇 가지 시판식초에 비해 폴리페놀(478.89mg/L)을 다량 함유하여 DPPH 라디칼 소거활성, ABTS 라디칼 소거활성, FRAP assay으로 표현되는 높은 항산화활성을 나타냈다. 따라서 본 연구에서 개발된 당근식초는 조리용은 물론 기능성 음료로서 이용이 가능할 것으로 생각된다.
Two step rapid filter system as a pre-treatment for the injected water into aquifer storage and recovery (ASR) in Korea was developed to reduce physical blockage and secure the volume of the injected water. First, single rapid sand filters with three different media sizes (0.4~0.7, 0.7~1.0 and 1.0~1.4 mm) were tested. Only two sizes (0.4~0.7 and 0.7~1.0 mm) satisfied target turbidity, below 1.0 NTU. However, they showed the fast head loss. To prevent the fast head loss and secure the volume of the injected water, a rapid anthracite filter with roughing media size (2.0~3.4 mm) were installed before a single rapid sand filter. As results, both the target turbidity and reduction of head loss were achieved. It was determined that the media size for a rapid sand filter in two step rapid filter system (i.e. a rapid anthracite filter before a rapid sand filter) was 0.7~1.0 mm. In addition, the effects of coagulant doses on the removal of natural organic matter (NOM), which might cause a biological clogging, were preliminarily evaluated, and the values of UV254, dissolved organic carbon (DOC) and SUVA were interpreted.
Metal nanowires can be coated on various substrates to create transparent conducting films that can potentially replace the dominant transparent conductor, indium tin oxide, in displays, solar cells, organic light-emitting diodes, and electrochromic windows. One issue with these metal nanowire based transparent conductive films is that the resistance between the nanowires is still high because of their low aspect ratio. Here, we demonstrate high-performance transparent conductive films with silver nanofiber networks synthesized by a low-cost and scalable electrospinning process followed by two-step sequential thermal treatments. First, the PVP/AgNO3 precursor nanofibers, which have an average diameter of 208 nm and are several thousands of micrometers in length, were synthesized by the electrospinning process. The thermal behavior and the phase and morphology evolution in the thermal treatment processes were systematically investigated to determine the thermal treatment atmosphere and temperature. PVP/AgNO3 nanofibers were transformed stepwise into PVP/Ag and Ag nanofibers by two-step sequential thermal treatments (i.e., 150˚C in H2 for 0.5 h and 300˚C in Ar for 3 h); however, the fibrous shape was perfectly maintained. The silver nanofibers have ultrahigh aspect ratios of up to 10000 and a small average diameter of 142 nm; they also have fused crossing points with ultra-low junction resistances, which result in high transmittance at low sheet resistance.