검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 13

        1.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, the effects of electrodes type (copper, steel or CFRP) and design (plate or mesh) on electrical stability of conductive cement as exposed to various weathering conditions were investigated. To fabricate these composites, multiwalled carbon nanotube and carbon fiber were added to the cement composites by 0.6 and 0.4% by cement mass. Seven different types of electrodes were embedded to the samples, and their electrical stability was examined during the curing period. In addition, the fabricated samples were exposed to water ingress and cyclic heating conditions. Then, the compressive strength of the samples was evaluated to observe the interfacial bonding between the cement paste and electrodes. Based on the experimental results, it was found that the samples showed different electrical stability even their mix proportion was same. Thus, it can be concluded that the type and design of the electrodes are important in measuring the electrical properties of the conductive cement composites. Specifically, an improved electrical stability of electrodes is required when they are exposed to various weathering conditions.
        4,000원
        2.
        2023.11 구독 인증기관·개인회원 무료
        Wasteform is the first barrier to prevent radionuclide release from repositories into the biosphere. Since leaching rates of nuclides in wasteform significantly impact on safety assessment of the repository, clarifying the leaching behavior is critical for accurate safety assessment. However, the current waste acceptance criteria (WAC) of the Gyeongju repository only evaluates leachability indexes for Cs, Sr, and Co, which are tracers for nuclear power plant waste streams. Furthermore, ANS 16.1, the current leaching test method used in WAC, applies deionized water (DI) as leachant. However, the interactions between wasteform and groundwater environment in the repository may not be reflected. Therefore, it is necessary to review the current leaching test method and nuclides that may require the extra evaluation of leachability beyond the Cs, Sr, and Co. Tc and I are key nuclides contributing to high radioactive dose in safety assessment due to their high mobility and low retardation factor. The groundwater conditions within the repository, such as pH and Eh significantly affect the chemical form of Tc and I. For example, Tc in H2O system tends to form hydroxide precipitates in neutral pH condition and TcO4 - in strong alkaline environments according to the Pourbaix diagram. In case of I, it generally exists in the form of I-, while it exists as IO3 - as Eh increases. Although the current leaching test at the Gyeongju repository applies DI as a leachant, the actual repository is expected to have a highly alkaline environment with a substantial amount of various ions in the groundwater. Consequently, the leaching behavior in the ANS 16.1 test and the actual disposal condition is different. Thus, it is necessary to analyze the leaching behavior of Tc and I with reflecting the actual disposal environment. In this study, the leaching behavior of Tc and I is investigated by following ANS 16.1 leaching test method. The solidified waste specimens containing 10 mmol of Re and I were manufactured with cement, which is widely used as a solidification material. Re was applied instead of Tc, which has similar chemical behavior to Tc, and NH4ReO4 and NaI were used as surrogates for Re and I. As a leachant, deionized water and cement-saturated groundwater were prepared and the concentration of nuclides in the leachant is analyzed by ICP-OES. As the result of this study, experimental data can be applied to improve the WAC and disposal concentration standards in the future.
        3.
        2023.05 구독 인증기관·개인회원 무료
        Several tests should be performed to estimate the structural and chemical stability of the radioactive waste. Among the tests in Gyeongju LILW repository, the leaching test which follows ANS 16.1 standard test method should be conducted for Cs, Sr, and Co radionuclides and must satisfy leachability index larger than 6 which applies deionized water as a leachant. However, the expected leachant inside the silo is groundwater that contains various ions and a high pH condition is predicted due to the concrete structures inside the silo. According to the chemical environment of the leachant, the chemical form of the radionuclides varies from precipitate to ion. Cobalt precipitates when the leachant has high pH environment which is similar condition to the cement-saturated leachant. Unlike the cobalt, cesium is preferred to exist as ion in the high pH condition. Therefore, the significant effect of the chemical environment of the leachant on the leachability of the radionuclides should be considered for the waste acceptance criteria of the radioactive waste repository. From the ‘NRC, Technical position on the waste form, rev1’, the leaching test method should follow the ANS 16.1 methods by using deionized water as leachant, however, a new leachant showing more aggressive leachability can be applied instead of deionized water. In the other hand, ASTM C1308 leaching test method recommends applying actual groundwater of the repository as a leachant. FT-04-020, the leaching test method of France, suggests the ion composition of the groundwater including the pH value. Therefore, the adequacy of using deionized water as leachant for the leaching test method of Cs, Sr, and Co should be re-examined. In this study, the leaching behavior of Cs, Sr, and Co under the several leachant types is estimated. The cement solidified specimen containing single Cs, Sr, and Co were manufactured. The leaching test following ANS 16.1 was performed by applying deionized water, simulated groundater, and cement-saturated groundwater. As a result, a leachability index difference according to the leachant type was discussed. The result of this study is expected to be a background data that helps understanding the actual leaching behavior of the Cs, Sr, and Co in the Gyeongju LILW repository.
        4.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근, L형 도로측구 상 열화, 균열로 인한 유지보수 작업이 빈번해지고 있다. 본 논문에서는 쐐기 앵커를 이용한 L형 도로측구의 최적 설계에 대해 제시하고자 하였다. 해석 결과, 두 개의 쐐기앵커를 350mm로 관입시킨 경우에서 구조적 안정성을 충분히 확보하는 것을 확인하였다. 또한 3%의 개질유황 콘크리트 배합이 압축강도, 동결융해 등의 내구성 기준을 만족하였다. 반복하중에 대한 수치해석과 현장 평가가 수행 중에 있으며, 추후 해당 시스템의 적용성을 평가하기 위한 추적 조사가 이루어져야 할 것이다.
        4,000원
        5.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : It is necessary to clarify the rheological properties of cement paste as a basic research in the development of mechanistic concrete mix design. The rheological properties of cement paste with different binder types, mix propositions, and with/without high range water reducers have been analyzed. METHODS: In this study, ordinary Portland cement, fly-ash, blast furnace slag, silica fume, and limestone powder were used as binders. The range of water-binder ratio was 0.3-0.5, and a total of 30 different mixes have been tested. The slump flow test, V-funnel test, and Dynamic Shear Rheometer (DSR) test were performed to analyze the rheological properties of cement paste. RESULTS : As a result of the slump flow test, it was found that the composition ratio of the binder contents greatly affected the paste flow when the high range water reducers were added. The results of V-funnel test showed that when the water-binder ratio was decreased without high range water reducers, the binder composition ratio had a large effect on the passing time of the V-funnel tester, but with high range water reducers the impact of the binder composition ratio was decreased. The slump flow and V-funnel have a certain relationship with the rheological factors (yield stress and plastic viscosity), but the correlation was not significant. Finally, we proposed the M-value considering the density and specific surface area of the binder. The correlation between rheological factors and M-value were better demonstrated than experimental values, but there is still a limit to predict the rheological factor in general mix design. CONCLUSIONS: In this study, the rheological properties of cement paste were analyzed. The binder type, composition ratio of binder, and with/without high range water reducers have combined to provide the complex effects on the rheological properties of cement paste. The correlation between the proposed M-value and rheological factor was found to be better than experimental results, but needs to be improved in the future.
        4,300원
        6.
        2011.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        콘크리트에서 강도는 콘크리트의 물리적 특성을 평가할 수 있는 중요한 인자 중 하나이며 콘크리트에 가장 많은 부피를 차지하는 것이 골재이다. 또한 시멘트는 콘크리트 만드는 결합재로서 이 역시 강도와 매우 밀접한 관계가 있다. 이러한 골재와 시멘트의 특성이 콘크리트 압축강도와 전단파 속도의 상관관계에 미치는 영향을 파악하고자 굵은 골재 최대치수와 시멘트 종류별로 실험을 실시하였다. 시멘트는 1종 시멘트와 초속경 시멘트를 사용했고, 골재는 서로 다른 지역의 3가지 골재를 사용하였다. 골재의 입도는 굵은 골재 최대치수 19mm와 13mm의 단입도 골재를 사용하여 동일 배합시 압축강도와 전단파 속도의 상관관계를 살펴보았다. 또한 골재의 특성을 정량화 하고자 LA마모시험을 실시하였다. 그 결과 압축강도와 전단파 속도의 상관관계는 시멘트 종류에 따라 달랐으나, 골재의 종류, 입도 및 마모감량에 관계없이 일정한 상관성을 보이는 것으로 나타났다.
        4,000원
        9.
        2019.10 서비스 종료(열람 제한)
        품질의 변동성이 많은 순환유동층 플라이 애시를 현장에서 혼화재로 사용하는 것 보다 수경성 시멘트의 초기강도 발현을 위한 자극제로 활용할 수 있는 가능성을 판단하고자 하였으며, 이를 위하여 다양한 조건의 시멘트 조합을 사용하여 강도특성을 실험적으로 분석하였다. 실험을 통하여 순환유동층 보일러 플라이애시의 free CaO와 반응성 CaO가 수경성 시멘트 품질에 미치는 영향을 분석하였으며, 석고를 대체할 수 있는 결합재로 활용이 가능함을 확인하였다.
        11.
        2017.09 서비스 종료(열람 제한)
        In case of high performance fiber reinforced cementitious composite(HPFRCC) specimens with steel fiber of 30mm they exhibited poorer flexural strength than the straight fibers at a higher than 1.5% compared to steel fiber of 13mm and 19.5mm. In this study, Therefore we evaluated the flexural strength and cracking behavior of HPFRCC with steel fiber type such as fiber length, volume fraction.
        12.
        2016.10 서비스 종료(열람 제한)
        This paper describes the hydration heat properties of cement composite different with phase change material (PCM) type. The test results indicated that use of barium materials has more effective to delayed time of hydration of cement composite. On the other hand, strontium based PCM more effective to reduction of hydration heat of cement composite.
        13.
        2014.10 서비스 종료(열람 제한)
        This study investigated the effect of cement type and ground granulated blast furnace slag (GGBS) on the mechanical properties and workability of grout for offshore PSC structures. As the replacement ratio of GGBS increased, the flowability of the grout increased and both intial and final setting times of grout was delayed regardless of cement type. However, the effects of GGBS on the bleeding of grout were different according to the type of cement: as the ratio of GGBS increased, less bleeding was observed for the grout with typeⅠ cement whereas higher bleeding was generated for the grout with type Ⅲ cement. However, there was no significant difference in their compressive strength at 28 day according the different replacement ratio of GGBS from 0 to 40%.