Effects of glutamic acid (Glu) and monosodium glutamate (MSG) on oxidative stability of oil-in-water (O/W) emulsions with different emulsifier charges during riboflavin (RF) photosensitization were evaluated by analyzing headspace oxygen content and conjugated dienes. Cetyltrimethylammonium bromide (CTAB), Tween 20, and sodium dodecyl sulfate (SDS) were used as cationic, neutral, and anionic emulsifiers, respectively. Glu acted as an antioxidant in CTAB- and Tween-20-stabilized O/W emulsions during RF sensitization, whereas Glu acted as prooxidants in SDS-stabilized O/W emulsions in the dark. However, adding MSG did not have a constant impact on the degree of oxidation in O/W emulsions irrespective of the emulsifier charge. In RF-photosensitized O/W emulsions, the emulsifier charge had a greater influence on antioxidant properties of Glu than on those of MSG.
This study was carried out to produce stable evening primrose oil in water emulsion by using various emulsifier with HLB (8.6, 12, 16.7), concentration (0-45%) and emulsification methods such as high-speed emulsification (7,000 rpm, 2 min) and high-pressure homogenization (10,000 psi, 1 cycle). And then properties of evening primrose oil in water emulsion was evaluated with keeping at room temperature and 40oC during 28 days. Lower HLB 8.6 and high viscosity emulsifier added emulsions were not appropriate for high-pressure homogenization and were separated in a day. The optimum emulsification condition was HLB 12 and high-pressure homogenization (10,000 psi, 1 cycle) for evening primrose oil in water emulsion. These emulsions produced by optimum condition were not separated with the aqueous phase and the oil phase and they were nano-sized around 200 nm, higher zeta-potential (±mV), mono-polydispersed (<0.3), and less oxidized (<0.4) during 28 days.
This study was performed to analyze a saltiness enhancement at the same salt content through multiple emulsion. We compared the samples with different conditions to determine the optimum stability conditions of water-in-oil through layer separation rate, microscopic observation and size analysis. Four electrolytes such as NaCl, KCl, MgCl2, and CaCl2 were used and agar contents ranged from 0 to 1% were experimented at different volume ratios including 5:5, 4:6, 3:7, 2:8, and 1:9 of water and oil. As a result of this study, the droplet size according to the electrolyte type did not show significant differences (p<0.05). Therefore, KCl was used to facilitate in-body excretion of NaCl in the outer water phase, and corn oil containing 8%(w/w) polyglycerol polyricinoleate was used as oil phase. When the volume ratio of water and oil was 3:7, 2:8, and 1:9, the layer separation rate was relatively slow and droplet size was also small. It reveals that the particle size becomes smaller as the water volume ratio decreases. However, considering the amount of water to be stored and eluted on the inner water, appropriate volume ratio of water and oil should be adopted to 3: 7. At Microscopic observation depending on agar concentrations, small particle size appeared at 0.2% and 0.4% agars. When the water and oil ratio was fixed at 3:7, the particle size was measured at 0.2% and 0.4% agar using a zeta sizer. In conclusion, the droplet size of 0.2% agar was smaller than 0.4%. Therefore, the most stable water-in-oil emulsion was obtained with 0.2% agar, when water to oil ratio was 3:7.
Curcumin is an active polyphenolic compound with antioxidant, anti-inflammatory and antitumor properties. Curcumin, however, is highly unstable under physiological conditions due to its low stability in acidic and alkaline conditions. Therefore, the objective of this study was to investigate the effects of enzyme-treated rice starch as a wall material on the stability of curcumin in oil-in-water emulsion under different pH conditions. The rice starch was treated using 4-a-glucanotransferase for different time periods and their molecular weight distribution was measured by HPSEC. Curcumin was encapsulated within lipid droplets of O/W emulsion prepared with Tween 20 and the modified rice starch in the aqueous phase at different concentrations (0, 2.5, 7.5 and 10 wt%). The temperature and pH stability of the system were determined respectively by measuring particle size, zeta potential and retention of the curcumin loaded in the emulsion after one-week storage in the solutions with different pH and temperature conditions. The average molecular weight of the modified starch decreased with treatment time. The 96h treated rice starch had the lowest molecular weight while the 1h treated starch mainly consisted of high molecular weight components. The storage temperature did not significantly influence the stability of curcumin emulsion. However, the particle size of the emulsion with modified starch slightly increased when stored at acidic pH condition, which might be attributed to starch aggregation. The curcumin retention was higher for the samples with the modified starch than the control at all concentrations. The pH stability of the curcumin was also higher than the control at all pH conditions. Specifically, the 1h treated starch showed the best performance regarding curcumin protection in emulsion, which might be attributed to the high viscosity that retarded the curcumin release. Further research needs to be conducted on the mechanism.
‘용매 이동 유도 상분리‘라는 신 기법을 이용하여 바이젤 중공사막을 개발했고 이를 물/기름 에멀젼 분리에 적용하였다. 바이젤막은 미세유체장치를 이용한 방사법을 통해 제조되며, 제조액으로는 실리카 나노입자가 분산된 삼성분계 혼 합액 (물/가교 가능한 단량체/ 에탄올)을 사용한다. 실리카 나노 입자의 양, 입자 표면을 개질하는 계면활성제의 양에 따라 표면층의 기공 크기 및 하부 층의 구조 변화를 살펴보았다. 바이젤 막의 장점은 후 코팅 공정을 거치지 않고도, 막 표면 전체를 실리카 입자 층으로 덮어 anti-fouling 효과를 보유한다는 점이다. 물/기름 에멀젼에서 순수 물을 얻는 정밀여과에 적용하였으며, 상용 폴리설폰 중공사막보다 우수한 oil rejection 및 투과도를 보여주었다.
The purposes of this research were to develop water-in-oil-in-water double emulsion (DE) for co-loading EGCG and piperine as its marker compounds, and to determine its physicochemical properties. Stable DE was produced based on our previous research. Briefly, for oil phase (O), olive oil, glycerol ester of wood rosin, polyglycerol polyricinoleate, piperine, and for interior water phase (W1), deionized water, gelatin, sodium chloride, ascorbic acid, and EGCG were mixed and heated up to 60°C. Thereafter, W1 was dispersed into O dropwisely followed by magnetic stirring, high-shear homogenization, and ultrasonication, respectively. Produced water-in-oil primary emulsion (PE) was rested at 4°C for 30 min. For exterior water phase (W2), deionized water, sodium chloride, ascorbic acid, and polyoxyethylene sorbitan monooleate were mixed. Thereafter, PE was dispersed into W2 dropwisely followed by magnetic stirring, ultrasonication, and high pressure homogenization, respectively. The structure of DE was observed through optical and transmission electron microscopy. And the influence of applying time of high pressure homogenization on the stability of DE was determined. Also, in vitro release characteristics of DE was investigated by using HPLC. Optimized stable DE would be an attractive delivery system for co-loading both hydrophilic and lipophilic bioactive compounds simultaneously. And, once developed, it can be applied to the various food applications such as beverage in a wide range of formulations.
Ginsenosides are sensitive to various factors such as pH, temperature, ionic strength, etc. However, powdery form of ginseng is good to preserve ginsenosides in it compared to the extracted form. In addition, the ginseng powder can provide pickering effect to control emulsion stability as a substitute of emulsifier forming wall on the surface of oil. A ginseng pickering emulsions was prepared by mixing, MCT oil, polysorbate 80 and ginseng. Thereafter, to homogenize the emulsions magnetic stirrer, homogenizer and ultra sonicator were used. The physicochemical properties, stability, and bioaccessibility of the ginseng pickering emulsion were investigated. Both particle size and polydisperse index of the ginseng pickering emulsion were constant as time elapsed. However, pH and zeta-potential of the ginseng pickering emulsion decreased over time. Moreover, to find out the proper amount of ginseng powder, different ginseng powder weights were added to sample respectively and the physiochemical characteristics were measured. The pH and zeta-potential value tended to decrease following increase of amount of ginseng powder. This result is impacted to food quality and it could be used as a preliminary result in the development of food product.
The purpose of this research was to investigate the effect of weighting agent (WA) and high pressure homogenization (HPH) on the stability of water-in-oil-in-water double emulsion (DE). To prepare oil phase (O), olive oil, glycerol ester of wood rosin (WA; variable 1), and polyglycerol polyricinoleate (lipophilic emulsifier), and for interior water phase (W1), deionized water, gelatin, sodium chloride, ascorbic acid, and green tea extract(core material) were mixed and heated. When temperature of O and W1 reached up to 60℃, W1 was dispersed into O dropwisely followed by magnetic stirring at 1500 rpm for 2 min (O:W1=3:1). By applying homogenization at 4000 rpm for 2 min followed by ultrasonication for 4 min, water-in-oil primary emulsion (PE) was produced. And resting PE at 4℃ for 30 min was followed. For exterior water phase (W2), deionized water, sodium chloride, ascorbic acid, and polysorbate 80 (hydrophilic emulsifier) were mixed. When temperature of PE reached at room temperature (24 ± 2℃), PE was dispersed into W2 dropwisely followed by magnetic stirring at 1500 rpm for 15 min (PE:W2=1:3). By applying ultrasonication for 2 min followed by HPH at 500 bar for 1 to 3 times (variable 2), DE was produced. When DE was freshly produced, phase separation occurred at different period of time depending on whether variable 1 and 2 were applied or not (from 5 min to more than a day). The structure of DE was observed through optical and transmission electron microscopy. And relationship between the mean size of oil droplets and the occurring time of phase separation was studied. DE can be used as an appropriate delivery system for co-loading both hydrophilic and lipophilic bioactive compounds simultaneously, and promoting industrialization as well by applying it to food products, for example, beverage.
This study is related to the developing method of a transparent sunscreen cosmetic which has waterproofing property and no white turbidity when applied to skin. The transparent sunscreen is prepared by exploiting refractive index difference between oil-phase and water-phase of water-in-oil(W/O) emulsion. The sunscreen according to this study is prepared as a W/O type emulsion so that it is water-stable and water resistance. Also, the stability of W/O type emulsion is developed by adjusting the content of oil phase part and water phase part. As a result of this studying, the transparent W/O emulsion is prepared by adjusting the refractive index of oil-phase and water-phase within 0.004 and it is found that the stability of the transparent sunscreen is increasing when the water phase part is over 75% (w/w) of the W/O emulsion.Through clinical test of transparent sunscreen, the value of sun protection Factor(SPF) and Protection Factor of UVA(PFA) were determined. SPF and PFA values of transparent sunscreen were indicated 30.99±1.65 and 3.01±0.30.
본 연구에서는 농축유청단백질을 이용하여 내부젤화 방법으로 나노크기(<~200 nm)의 W1/O/W2 다중 에멀젼을 제조하고, 제조 공정요인(가교제인 CaCl2 농도, 초음파처리, 유화제)에 따른 나노다중에멀젼의 형태학적, 물리화학적(입자크기, 다분산지수, 제타전위) 특성 평가와 모델 유식품(우유, 요구르트, 치즈)을 이용한 저장 안정성을 연구하였다. 나노다중에멀젼의 형태학적 특성은 투과전자현미경을 이용하여 관찰하였으며 물리화학적 특성 및 유식품 저장 안정성 평가는 입도분석기를 이용하여 수행되었다. 실험 결과 가교제인 CaCl2을 첨가함에 따라 다중에멀젼의 크기가 유의적으로(p<0.05) 감소하였으며, 이용된 CaCl2 모든 농도(0, 4, 6, 8 mM)에서 음전하를 지닌 다중에멀젼은 다분산지수 0.2 이하의 균질의 입자 분포를 지니고 있음을 알 수 있었다. 또한 투과전자현미경을 이용하여 관찰한 결과, ~ 180 nm 크기의 내부에 오일상이 포함된 구형의 나노다중에멀젼이 성공적으로 제조되었음을 확인하였다. 초음파 처리시 다중에멀젼 크기는 유의적으로(p<0.05) 감소하였으며, 다분산지수 0.2 이하의 나노다중에멀젼이 생성됨을 확인하였다. 또한 수상 내 유화제 첨가 시 입자크기가 유의적으로(p<0.05) 감소하였고, 다분산지수 0.2 이하의 나노다중에멀젼이 생성됨을 확인하였다. 모델 유식품 저장 환경에서의 안정성 평가 결과 14일 동안 나노다중에멀젼은 물리화학적 안정성을 유지하였으며, 결과적으로 농축유청단백질 나노다중에멀젼은 유식품 적용성이 뛰어남을 확인하였다.
Cosmetic industries have recently developed sun-block products, which are composed of W/O or O/W emulsion system. It was very difficult for waterproofing product to show the stability in W/O emulsion with TiO2. To enhance the stability of W/O emulsion, it needs to be combined with the water and oil soluble components as the gelling agents. The emulsifiers used in W/O were 3.0% of cetyl dimethicone copolyol, 2.0% of sorbitan sesquioleate as the basic emulsifiers, and 0.6% of quaternium-18 bentonite and 1.5% of dextrin palmitate as stabilizer were used. The content of titanium dioxide was optimized up to 8.0%. Titanium dioxide was used as the UV scattering powder coated with Al2O3(UV-sperse T40/TN). The sunscreen cream prepared with W/O emulsion system by using QB and DP showed higher stability than that of W/O emulsion system by using each QB and DP. W/O emulsion from Formula 3 for passing one year was very durable more than F1 and F2. Within W/O emulsion by observing F1, F2 and F3 for one year, F3 was more excellent than F2 and F3 when they were observed at RT, 4℃, 40℃, because F3 used the mixed QB and DP in W/O emulsion. The zeta potential for F1, F2, and F3 after one year were 21, 30 and 43, respectively. From these result F3 was found best stable emulsion. The in-vitro SPF value for F3 was 35 for the initial product at room temperature and also, the in-vitro SPF values of F3 was 32 for after one year. Finally, the mean in-vivo SPF value of 10 volunteers for F3 was 27.3 by the Korea cosmetic association made the rules of SPF.
Rapeseed cake was extracted with 80% ethanol and then fractionated with H2O (fraction I) as well as with 30% (II), 50% (III), 70% (IV), and 100% ethanol (V). Total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, ferric-reducing antioxidant potential, and Trolox equivalent antioxidant capacity were in the order of fractions II > III > I > IV > V. The three fractions with high antioxidant activities and TPC (I, II, and III) were pooled and hydrolyzed by NaOH solution, resulting in 18.97 mg sinapic acid/g hydrolyzed extract and 21- and 2.2-fold increases in TPC and DPPH radical scavenging activity, respectively. Hydrolyzed rapeseed cake extracts (200, 500, and 1,000 ppm) and catechin (200 ppm) as a comparison were added to 10% fish oil-in-water emulsion, and their effects on oxidative stability were investigated by measuring hydroperoxide values (PV) during refrigerated storage. PVs were significantly lower in the emulsions with added hydrolyzed extract as compared to the control (p<0.05) and significantly decreased with increasing extract concentration (p<0.05) over a period of 29 days. The emulsion added with hydrolyzed extract showed higher PV than that added catechin at the same concentration (200 ppm) during 13-22 days (p<0.05), but after then, the PV was not significantly different (p>0.05). This study indicates that hydrolyzed rapeseed cake extract rich in sinapic acid may inhibit oxidation in a fish oil-in-water emulsion in a concentration-dependent manner.
센텔라 아시아티카 정량추출물(TECA)은 병풀에서 얻은 난용성 추출물로 상처치유 및 항주름 물질로 알려져 있다. 본 연구에서는 TECA를 함유한 water in oil in water (W1/O/W2) 에멀젼 제조에 필요한 최적 의 실험 조건을 찾기 위해 연구를 진행하였다. TECA의 용해도는 UV 흡광도계를 이용하였으며, 디프로필렌 글라이콜(40.0 g), 에탄올(20.0 g) 및 정제수(10.0 g)의 조성에서 2.55 g의 TECA가 용해되는 것을 확인하 였다. 에멀젼(W1/O, W1/O/W2)의 안정도에 영향을 미치는 요인에 대하여 조사하였다. W1/O 에멀젼의 제조 하기 위한 최적의 수상 조건은 디프로필렌글라이콜 : 에탄올 : 정제수 : TECA가 40.0 : 20.0 : 10.0 : 2.5% (w/w), 유상 조건은 스쿠알란 : 세틸피이지/피피지-10/1디메치콘 : 세테아릴알코올이 22.5 : 4.0 : 1.0% (w/w)임을 확인하였다. W1/O/W2 멀티에멀젼을 제조하기 위한 최적의 조건은 정제수 : W1/O 에멀젼 : 폴리 소르베이트 80 : 카보머 : 트리에탄올아민의 비율이 55.8 : 40.0 : 4.0 : 0.1 : 0.1% (w/w)임을 확인하였다.