검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 29

        1.
        2023.11 구독 인증기관·개인회원 무료
        Activated carbon (AC), extensively used across various industrial sectors, serves as a sponge for different types of gases due to its porous carbon material. These gases are attracted to the carbon substrate via van der Waals forces. In nuclear power plants, AC is commonly used to adsorb radioactive gases such as 86Kr and 134Xe, as well as radioiodine sources like 131I and 133I from gaseous effluents. Even if the adsorbed radioactive gases and radioiodine decay into non-radioactive elements, the spent AC still contains radioactive species with long half-lives, such as 3H (Tritium, T) and 14C (radiocarbon). Minimizing and separating waste that contains long-lived nuclides (e.g., 14C) are pivotal components of an efficient waste management approach. A challenging aspect of effectively managing disposed AC is to minimize long-lived radioactive substances by eliminating them. This paper explores and summarizes the technology used to remove pollutants (3H, 14C) trapped within the pores of Activated carbon through thermochemical vacuum and surface oxidation processes. By recycling and reusing spent Activated carbon, we anticipate a reduction in the volume of radioactive waste, leading to decreased disposal costs. Furthermore, this paper will contribute as a valuable reference in future studies, enhancing the understanding of vacuum thermal desorption and surface oxidation of used Activated carbon.
        2.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Evaporative emission generated through the fuel supply system of a gasoline automobile is prevented into the atmosphere through an activated carbon canister system. In this study, the oxygen functional group of activated carbon was controlled using a simple gas phase treatment to improve evaporative emission reduction performance, and the adsorption/desorption performance of evaporative emissions was evaluated according to microwave heating conditions. Microwave heating was used to remove the oxygen functional group of the activated carbon efficiently. Microwave heating was found to remove oxygen functional groups in a short treatment time (1–7 min). Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscope–energy-dispersive X-ray spectroscopy were employed to investigate modifying the oxygen functional group of the activated carbon. Using N2/ 77K adsorption/desorption isotherm, the textural properties of the activated carbon according to microwave heating conditions were examined. The Brunauer–Emmett–Teller (BET) equation was used to calculate the specific surface area of the activated carbon, and the Dubinin–Radushkevich (DR) equation was used to calculate the micropore volume of activated carbon. Microwave heating effectively increased the butane working capacity, which is the neat adsorption capacity of activated carbon, from 7.12 g/100 ml to a maximum of 8.04 g/100 ml.
        4,000원
        3.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ocean biogeochemistry plays a crucial role in sustaining the marine ecosystem and global carbon cycle. To investigate the oceanic biogeochemical responses to iron parameters in the tropical Pacific, we conducted sensitivity experiments using the Nucleus for European Modelling of the Ocean–Tracers of Ocean Phytoplankton with Allometric Zooplankton (NEMO-TOPAZ) model. Compared to observations, the NEMO-TOPAZ model overestimated the concentrations of chlorophyll and dissolved iron (DFe). The sensitivity tests showed that with increasing (+50%) iron scavenging rates, chlorophyll concentrations in the tropical Pacific were reduced by approximately 16%. The bias in DFe also decreased by approximately 7%; however, the sea surface temperature was not affected. As such, these results can facilitate the development of the model tuning strategy to improve ocean biogeochemical performance using the NEMOTOPAZ model.
        4,200원
        4.
        2021.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The behaviors of various desorption agents were investigated during the desorption of cesium (Cs) from samples of clay minerals and actual soil. Results showed that polymeric cation exchange agents (polyethyleneimine (PEI)) efficiently desorbed Cs from expandable montmorillonite, whereas acidic desorption solutions containing HCl or PEI removed considerable Cs from hydrobiotite. However, most desorption agents could desorb only 54% of Cs from illite because of Cs’s specific adsorption to selective adsorption sites. Cs desorption from an actual soil sample containing Cs-selective clay mineral illite (< 200 μm) and extracted from near South Korea’s Kori Nuclear Power Plant was also investigated. Considerable adsorbed 137Cs was expected to be located at Cs-selective sites when the 137Cs loading was much lower than the sample’s cation exchange capacity. At this low 137Cs loading, the total Cs amount desorbed by repeated washing varied by desorption agent in the order HCl > PEI > NH4+, and the highest Cs desorption amount achieved using HCl was 83%. Unlike other desorption agents with only cation exchange capabilities, HCl can attack minerals and induce dissolution of metallic elements. HCl’s ability to both alter minerals and induce H+/Cs+ ion exchange is expected to promote Cs desorption from actual soil samples.
        4,200원
        5.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The carboxylated multi-walled carbon nanotubes (MWCNTs–COOH) were used as adsorbent for the separation of flavonoids (naringin and rutin) from bitter orange peel. The influence of the parameters such as, pH values, contact time, and desorption conditions was investigated. The samples were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, derivative thermogravimetric, scanning electron microscopy, UV–Vis spectroscopy, and high-performance liquid chromatography. After separation and desorption process, the eluent was injected for chromatography analysis. Under the optimal conditions, experimental results showed that the extraction efficiency of rutin was higher than naringin and other compounds. Moreover, the desorption percentage of flavonoids was calculated 83.6% after four cycles. This research confirmed that this method for separation of flavonoids is simple and less cost. In addition, the separated flavonoids can be used as antioxidant for the future applications.
        4,000원
        7.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Herein, the edges in carbon materials were quantitatively evaluated by summing the amount of hydrogen and the amount of functional groups without hydrogen in the material. The amount of hydrogen in the carbon material was quantitated via temperature-programmed oxidation (TPO) under an oxygen atmosphere, whereas the amount of functional groups was determined via temperature-programmed desorption (TPD) of the sample under an inert atmosphere. Consequently, the amount of edges in exfoliated carbon fibers prepared from polyacrylonitrile (PAN) (referred to as PAN-1000) was 9.4 mmol g−1. In addition, Ketjen Black (KB) and activated carbon (AC) had edge content of 1.3 and 3.6 mmol g−1, respectively. Because the total amount of functional groups of PAN-1000, KB and AC were estimated to be 8.18, 0.082 and 1.02 mmol g−1 via TPD, the total amount of edges and oxygen-containing functional groups of each sample could be quantified. The difference between amount of edges and the amount of functional groups is speculated to correspond to the amount of edges terminated with hydrogen. This study revealed that detailed information about the edges such as their proportion terminated with oxygen-containing functional groups, the species and amount of oxygen-containing functional groups via a combination of TPO and TPD.
        4,000원
        8.
        2019.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To develop flexible adsorbents for compact volatile organic compound (VOC) air purifiers, flexible as-spun zeolite fibers are prepared by an electrospinning method, and then zeolite particles are exposed as active sites for VOC (toluene) adsorption on the surface of the fibers by a thermal surface partial etching process. The breakthrough curves for the adsorption and temperature programmed desorption (TPD) curves of toluene over the flexible zeolite fibers is investigated as a function of the thermal etching temperature by gas chromatography (GC), and the adsorption/desorption characteristics improves with an increase in the thermal surface etching temperature. The effect of acidity on the flexible zeolite fibers for the removal of toluene is investigated as a function of the SiO2/Al2O3 ratios of zeolites. The acidity of the flexible zeolite fibers with different SiO2/Al2O3 ratios is measured by ammonia-temperature-programmed desorption (NH3-TPD), and the adsorption/desorption characteristics are investigated by GC. The results of the toluene adsorption/desorption experiments confirm that a higher SiO2/ Al2O3 ratio of the flexible zeolite fibers creates a better toluene adsorption/desorption performance.
        4,000원
        10.
        2018.10 구독 인증기관·개인회원 무료
        우드펠렛은 가정용, 상업용, 산업용 등으로 사용되며 특히 화력발전소에서 석탄 대용으로 수입량이 급증하여 연간 약 2,400만톤 가량 수입되고 있는 상황이다. 우드펠렛 검역훈증제로 기존에는 메틸브로마이드(이하 MB)가 최근까지 사용되어져 왔으나, MB의 높은 흡착률과 우드펠렛의 과도한 수용비로 인해 최종가스농도 기준에 미치지 못하여 재투약하는 사례가 빈번히 발생해 문제가 되어져왔다. 이를 해결하기 위해 농림축산검역본부에서는 올해 초 MB와 포스핀을 병행으로 처리하는 방식의 소독처리기준을 신설하였다. 새로운 소독처리기준이 설정됨에 따라 배기시 안전한 배기시간 수준을 설정하기 위해 병행처리 후 수착과 탈착되는 가스농도를 조사하였다. 실내 훈증상에 우드펠렛을 채우고 약제 처리한 결과 각 훈증제의 TLV(Threshold Limit Value)-TWA(Time Weighted Average) 기준이하로 농도가 감소되는 배기시간은 25℃일 때 MB는 120시간, 포스핀은 6시간으로 측정되었고 15℃일 때 MB는 186시간, 포스핀은 19시간으로 측정되었다.
        12.
        2015.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The adsorption/desorption characteristics of toluene vapors filled with activated carbon(AC) were studied. Adsorption performance of AC was investigated according to flow rate, moisture content, and other factors. The breakthrough time was shortened as the flow rate and moisture content increased. The AC loaded with toluene was regenerated by programmed heating and pressure. AC was regenerated well, as the conditions of heating temperature(80oC) and pressure(100 torr) were appropriate. Toluene is more easily removed at low temperature than through thermal desorption methods. The test of AC regeneration was carried out three times.
        4,000원
        13.
        2011.10 구독 인증기관·개인회원 무료
        Proteomics may help to detect subtle pollution-related changes, such as responses to mixture pollution at low concentrations, where clear signs of toxicity are absent. Also proteomics provide potential in the discovery of new sensitive biomarkers for environmental pollution. We utilized SELDI-TOF MS (surface enhanced laser desorption. / ionization time-of-flight mass spectrometry) to analyze the proteomic profile of Heterocypris incongruens exposed to several heavy metals (lead, mercury, copper, cadmium and chromium) and pesticides (emamectin benzoate, endosulfan, cypermethrin, mancozeb and paraquat dichloride). Several highly significant biomarkers were selected to make a model of classification analysis. data sets obtained from H. incongruens exposed to pollutants were investigated for differential protein expression by SELDI-TOF MS and decision tree classification. Decision tree model was developed with training set, and then validated with test set from profiling data of H. incongruens. Machine learning techniques provide a promising approach to process the information from mass spectrometry data. Even thought the identification of protein would be ideal, class discrimination does not need it. In the future, this decision tree model would be validated with various levels of pollutants to apply field samples.
        15.
        2009.09 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        Recently, functional building materials have been developed and introduced to the market. Many building materials emit volatile organic compounds(VOCs) which have the potential to affect health and comfort, and moisture problem has a major role also being established in indoor air quality (1AQ) problems. The purpose of this study is to evaluate the performance of reduction of HCHO using the gupsum board and water vapour adsorption/desorption property for ceiling board for mock-up test room and test house. The mock-up test is conducted according environmental standard method for indoor air quality of the ministry of environment. The results of this study are as follows, the reduction of HCHO gypsum boards are showed an effect to reduce the formaldehyde(HCHO) concentration of mock-up test room and test house. The indoor humidity is also showed to be lower than the general ceiling materials, since there is increased in the absorbed indoor humidity by using a humidifier with moisture adsorption/desorption ceiling materials. In natural conditions, moisture adsorption/desorption ceiling materials is showed a higher humidity than general ceiling materials constructed in the mock-up test room. However It changes of moisture adsorption/desorption is not appeared in test house. Therefore, in case of decreasing and increasing in humidity, these materials can be offset by reduction of HCHO using the gypsum board.
        5,200원
        16.
        2008.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        전도성 활성탄소와 폴리비닐리덴플로라이드(PVDF)를 이용하여 제조된 탄소막을 이용하여 폐수의 Total dissolved Solid (TDS)를 제거할 수 있는 탄소막 시스템을 제조하였다. 100 ppm의 NaCl, Na2SO4, MgCl2, MgSO4수용액을 이용하여 탄소막의 기본 특성을 알아보았으며, (주)경인양행의 실제폐수인 염료폐수로부터 TDS를 제거하는 실험을 위하여 가로 × 세로가 각각 20cm인 탄소막 240장으로 구성된 Pilot 규모의 탄소막 시스템을 구성하였다. 원폐수를 초순수로 적절히 희석하여 제조된 6가지의 TDS (941, 2050, 2810, 3830, 4960, 6030 ppm)를 지닌 실제폐수를 이용하여 제조된 Pilot규모의 탄소막 시스템의 TDS 제거성능을 알아보았으며, 여러 운전조건에 따른 탄소막 시스템의 분리특성을 알아보았다.
        4,000원
        18.
        2001.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Adsorption and desorption characteristics of methyl iodide at high temperature conditions up to 250℃ by TEDA-impregnated activated carbon, which is used for radioiodine retention in nuclear facility, was experimentally evaluated. In the range of temperature from 30℃ to 250℃, the adsorption capacity of base activated carbon decreased sharply with increasing temperature but that of TEDA-impregnated activated carbon showed higher value even at high temperature ranges. Especially, the desorption amount of methyl iodide on TEDA-impregnated carbon represented lower value than that on unimpregnated carbon. The breakthrough curves of methyl iodide in the fixed bed packed with base carbon and TEDA-impregnated activated carbon at high temperature were compared. TEDA-impregnated activated carbon would be applicable to adsorption process up to 150℃ for the removal of radioiodine in a nuclear facility.
        4,000원
        19.
        2019.06 KCI 등재 서비스 종료(열람 제한)
        A zeolitic material (Z-Y2) was synthesized from Coal Fly Ash (CFA) using a fusion/hydrothermal method under low-alkali condition (NaOH/CFA = 0.6). The adsorption performance of the prepared zeolite was evaluated by monitoring its removal efficiencies for Sr and Cs ions, which are well-known as significant radionuclides in liquid radioactive waste. The XRD (X-ray diffraction) patterns of the synthesized Z-Y2 indicated that a Na-A type zeolite was formed from raw coal fly ash. The SEM (scanning electron microscope) images also showed that a cubic crystal structure of size 1~3㎼ was formed on its surface. In the adsorption kinetic analysis, the adsorption of Sr and Cs ions on Z-Y2 fitted the pseudo-second-order kinetic model well, instead of the pseudo-first-order kinetic model. The second-order kinetic rate constant (k2) was determined to be 0.0614 g/mmol·min for Sr and 1.8172 g/mmol·min for Cs. The adsorption equilibria of Sr and Cs ions on Z-Y2 were fitted successfully by Langmuir model. The maximum adsorption capacity (qm) of Sr and Cs was calculated as 1.6846 mmol/g and 1.2055 mmol/g, respectively. The maximum desorption capacity (qdm) of the Na ions estimated via the Langmuir desorption model was 2.4196 mmol/g for Sr and 2.1870 mmol/g for Cs. The molar ratio of the desorption/adsorption capacity (qdm/qm) was determined to be 1.44 for Na/Sr and 1.81 for Na/Cs, indicating that the amounts of desorbed Na ions and adsorbed Sr and Cs ions did not yield an equimolar ratio when using Z-Y2.
        20.
        2015.08 KCI 등재 서비스 종료(열람 제한)
        In order to establish the design parameters of adsorption for arsenic compounds with hydrotalcite including chlorine ion, the basic properties of adsorption and desorption as well as the oxidation of As (Ⅲ) were examined in batch tests. The maximum adsorption capacities of arsenite and arsenate were 6.2 ㎎-As(Ⅲ)/g and 103 ㎎-As (Ⅴ)/g, respectively. Although 80.4% of maximum desorption was shown in 20% NaOH solution, 5∼10% of NaOH was recommended considering operating benefits, where the proper condition of the desorption was in the range of 73% to 80%. The most suitable desorption condition was in the combination of NaCl (10∼20%) and NaOH (5∼10%). Within 2 minutes, As (Ⅲ) was easily oxidized to As (Ⅴ) with 0.0001 N KMnO4, where the maximum oxidization ratio was shown to 98.9%.
        1 2