Over the last decade, there has been growing interest in the plastic degradation capabilities of insect because herbivorous insects may be a valuable resource for microorganisms that can break down synthetic plastics. Insects that can digest plastics using their gut microbiota are gaining interest for use in bioremediation, although their environmental benefits remain unknown. However, most plastics biodegraded by insect gut microbes are polyethylene, polystyrene with little knowledge available on the gut microbiome of insects capable of degrading other synthetic plastics. Therefore, there is an urgent need to secure microbial resources based on insect-microbiome interactions and promote end-of-life solutions for synthetic plastics.
Plastics are widely used in industries in human society and because of their structural stability, degradation is a serious global issue. To estimate the degradation of plastic, 31 edible mushrooms were cultured with the selected plastic films (polyethylene [PE], polystyrene [PS], and poly(ethylene terephthalate) [PET]) for 3 months at 25 °C. Measuring the weight of the films showed that four species of mushrooms, namely Porostereum spadiceum, Ganoderma lucidum, Coprinellus micaceus, and Pleurotus ostreatus, exhibited the highest degrees of plastic degradation. In addition, the mushrooms and fungi that exhibited the most significant plastic degradation were cross-cultured to promote this degradation. As a result, cross-cultivation of G. lucidum and Aspergillus niger showed a weight loss of 2.49% for the PET film. For the PS film, Aspergillus nidulans showed a weight loss of 4.06%. Cross-cultivation of A. nidulans and C. micaceus, which showed a weight loss of 2.95%, was noted as an alternative for PS biodegradation, but is harmful to humans. These bio-degradation effects of edible mushroom will contribute to the development of alternatives for eco-friendly plastic degradation.
흰구름버섯 (Trametes hirsuta)의 균사체는 CR, CV, RBBR 등 방향족 염료가 함유된 고체와 액체 배지에서 이들 염료를 효과적으로 탈색하였으나 MB의 탈색은 저조하였다. 각각 CR, MB, CV 및 RBBR 등 4종류의 염료가 함유된 액체배지에서 흰구름버섯의 균사체를 10일 간 배양했을 때 laccase, LiP, MnP 등 세 종류의 효소를 모두 생산하였으며 이들 효소 중 laccase의 활성도가 가장 높았으며 LiP와 MnP의 활성도laccase에 비해 낮았다. 따라서 흰구름버섯 균사체에 의한 방향족 염료의 탈색에는 laccase가 주로 사용되고 LiP나 MnP는 보조적인 역할을 하는 것으로 사료된다. 또한 비스페놀 A가 0, 25, 50, 100, 200 ppm의 농도로 함유된 PDA 배지에 균사체를 접종하여 배양한 결과 비스페놀 A의 농도가 증가함에 따라 균사체의 생장은 농도 의존적으로 저해되는 것으로 나타 났다. 또한 비스페놀 A가 100 ppm 함유된 YMG 액체배지에 균사체를 접종하고 비스페놀 A의 분해율을 측정한 결과 배양 12시간 후 72.3%, 배양 24시간 후 95.3%, 그리고 배양 36시간 후에는 100% 분해된 것으로 나타났다. 따라서 본 연구 결과는 우리나라의 산업 활동 과정에서 생산되고 자연계로 배출되어 생물체에 큰 피해를 주는 합성염료와 내분비계 장애물질인 비스페놀 A를 친환경적으로 제거할 수 있는 기술의 개발에 도움이 될 수 있을 것으로 사료된다.
The white button mushroom, Agaricus bisporus, is commercially the fifth most important edible mushroom, accounting for the production of 9,732 tons of mushrooms in Korea in 2015. The genus Agaricus has been known for its potential to degrade lignocellulosic materials. Chemical analyses carried out during the cultivation of A. bisporus indicated that the cellulose, hemicellulose, and lignin fractions were changed preferentially for both vegetative growth and sexual reproduction. We screened A. bisporus strains for effective biodegradation through extracellular enzyme activity using cellulase, xylanase, and ligninolytic enzymes. The enzyme biodegradations were conducted as follows: mycelia of collected strains were incubated in 0.5% CMC-MMP (malt-mops-peptone), 0.5 Xylan-MMP, and 0.5% lignin-MMP media for 14 days. Incubated mycelia were stained with 0.2% trypan blue. Eighteen strains were divided into 8 groups based on different extracellular enzyme activity in MMP media. These strains were then incubated in sterilized compost and compost media for 20 days to identify correlations between mycelial growth in compost media and extracellular enzyme activity. In this study, the coefficient of determination was the highest between mycelial growth in compost media and ligninolytic enzyme activity. It is suggested that comparison with ligninolytic enzyme activity of the tested strains is a simple method of screening for rapid mycelial growth in compost to select good mother strains for the breeding of A. bisporus.
The hazards associated with the polycyclic aromatic hydrocarbons (PAHs) are known to be recalcitrant by their structure, but white rot fungi are capable of degrading recalcitrant organic compounds. Phlebia brevispora KUC9045 isolated from Korea was investigated its efficiency of degradation of four PAHs, such as phenanthrene, anthracne, fluoranthene, and pyrene. And the species secreted extracellular laccase and MnP (Manganese dependent peroxidase) during degradation. P. brevispora KUC9045 demonstrated effective degradation rates of phenanthrene (66.3%), anthracene (67.4%), fluoranthene (61.6%), and pyrene (63.3%), respectively. For enhancement of degradation rates of PAHs by the species, Remazol Brilliant Blue R (RBBR) was preferentially supplemented to induce ligninolytic enzymes. The biodegradation rates of the three PAHs including phenanthrene, fluoranthene, and pyrene were improved as higher concentration of Remazol Brilliant Blue R was supplemented. However, anthracene was degraded with the highest rate among four PAHs after two weeks of the incubation without RBBR addition. According to the previous study, RBBR can be clearly decolorized by P. brevispora KUC9045. Hence, the present study demonstrates simultaneous degradation of dye and PAHs by the white rot fungus. And it is considered that the ligninolytic enzymes are closely related with the degradation. In addition, it indicated that dye waste water might be used to induce ligninolytic enzymes for effective degradation of PAHs.
구름버섯(Trametes versicolor)은 phenolic compound인 CV와 MG를 효과적으로 탈색할 수 있었으며 고체와 액체배양 상태 모두에서 CV보다 MG를 더 효과적으로 탈색시켰다. 구름버섯에 의한 두 색소의 탈색 과정에서 phenolic compounds를 분해하는 것으로 알려진 세 가지 효소 중 laccase의 활성이 가장 높았다. MnP 역시 적은 수치지만 활성을 나타냈으며 LiP의 활성은 나타나지 않았다. 따라서 구름버섯에 의한 합성염료의 분해과정에서 laccase가 주로 사용되고 MnP는 탈색과정에서 보조적인 작용을 하는 것으로 추정된다. 그러나 CV의 경우 MnP가 활발하게 염료분해에 관여하는 것으로 판단된다. 또한 MG가 대부분 탈색되었을 때의 laccase 활성(0.16 U/mg)이 CV가 대부분 탈색되었을 때의 활성(0.23 U/mg)보다 현저하게 낮은 것으로 보아 구름버섯이 CV를 탈색시키는데 더 높은 활성의 laccase가 필요로 하는 것이 밝혀졌다. 본 실험에서 한국산 구름버섯 종의 CV와 MG 탈색능력이 확인되었으며 앞으로 한국산 구름버섯을 이용한 triphenyl methane계에 속하는 합성염료의 분해에 관한 친환경적 처리기술 개발에 도움이 될 것으로 기대된다.
자연 토양 및 Burkholderia cepacia를 접종한 멸균 토양에 PBSA film을 매립하여 PBSA의 생분해 특성을 조사하였다. 상온에서 80일간 매립 시험을 실시한 결과, 자연 토양에서는 PBSA film의 34.0%, B. cepacia를 접종한 멸균 토양에서는 59.2%의 질량 감소가 일어났으며 PBSA film의 표면 형태 변화도 B. cepacia를 접종한 멸균 토양에 매립한 경우가 자연 토양에 매립한 경우에 비하여 PBSA film
통영, 인천, 군산 및 홍성의 해수 미생물에서 각종 어업용구의 재료로 사용될 수 있는 Mater-Bi®, PHBV, PBSA 및 PCL의 분해거동을 조사하였다. Acinetobacter lwoffu/junii와 Shewanella algae/putrefaciens는 모든 해수속에 서식하고 있었으며 Eikenella corrodens 역시 비록 YITEK 결과의 신뢰도가 조금 낮은 수준으로 동정되었지만 모든 해수에서 검출되었다. 해수에서는 M
A possible rapid biodegradation of abandoned livestock was tested by using the dead pig and chicken. The dead pig (36 ㎏) was completely decomposed after 23 days of placement in the open field during June 2007. When the door of a cage in which a dead chicken (3.4 ㎏) was placed was opened, a lot of flies were attracted to the chicken and layed eggs on the chicken. As the result the chicken was decomposed down to 0.6 ㎏ after 6 days of placement in the open field, On the other hand when the door was closed, the decomposition was very slow. The chicken weighed 3.0 ㎏ even after 6 days. An experiment conducted during October 2007 showed that decomposition speed depended on the number of inoculated flies. When 50 pairs of Lucilia sericata flies were inoculated to 3.2 ㎏ chicken, it was decomposed down to 1.0 ㎏ after 22 days in the field. However, when 200 female and 100 male flies were inoculated, the 3.4 ㎏ chicken was decomposed to 0.8 ㎏ after 11 days in the field. A 10,858 pupae (371.2 g) was produced from the latter chicken. These pupae may possibly be used as a feed for fish and fowl. From these results it is considered that further research is needed to commercialize the blow flies for the rapid decomposition of an abandoned livestock of diverse size under diverse environment.
The present study was performed to investigate biodegradation rate of BPMC(2-sec-butylphenyl methyl carbamate) and chlorothalonil. In the biodegradation test of two pesticides by the modified river die-away method from June 17 to August 22, 1998, the biodegradation rate constants and half-life were determined in Nakdong(A) and Kumho River(B). Bio- degradation rate of BPMC was 27% in A sampling point, 40% in B sampling point after 7 days. Biodegradation rate constants and half-life of BPMC were 0.0460 and 15.1 days in A sampling point, 0.0749 and 9.3 days in B sampling point, respectively. Biodegradation rate of chlorothalonil was 100% in A and B sampling points after 7 days. Biodegradation rate constants and half-life of chlorothalonil were 0.1416 and 4.9 hours in A sampling point, 0.1803 and 3.8 hours in B sampling point, respectively. Biodegradation rate of chlorothalonil was faster than that of BPMC. Correlation analysis between biodegradation rate constants of pesticides and water quality(DO, BOD, SS, ABS, NH₃-N and NO₃-N) showed significant correlation with BOD, SS and NH,-N. Furthermore, regression analysis with BOD, SS and NH₃-N as independent variable and biodegradation rate constant as independent variable showed a significant linear equation. These results suggested that BPMC and chlorothalonil were mainly degraded by biodegradation, and the difference in biodegradation of two pesticides was due to difference of water quality.
난분해성 유기화합물의 일종인 염화 방향족화합물은 냉각제, 소화제, 페인트, 용매, 플라스틱류, 유압제, 제초제, 농약, 그리고 화학합성에 필요한 전구물질 등에 널리 사용된다. 이들은 친지질 특성을 가지므로 생물체의 세포막에 쉽게 흡착되며 먹이사슬에 의한 생물학적 농축과정을 통해 인간을 포함하는 각종 생물체에 축적된다. 그 결과 생물체의 세포막 구조가 변화되고 기능이 저해될 뿐더러 암과 돌연변이를 유발하고 「환경호르몬」
Chitosan and Algin are known as a natural polymers. Biodegradable films were prepared by solution blend method in the weight ratio of natural polymer(low, medium, high-Chitosan, Algin) for the purpose of useful bioimplants. The possibility of bioimplants, which were prepared from natural polymers as a skin substitute and food wrapping materials were evaluated by measuring biodegradability. This biodegradable films were inserted in the back of rats and their biodegradability was investigated by hematological change evaluation as a function of time to biotransformation. It was found that these values of biodegradable films give some good results with short period test.
Gum is known as natural polymer. Biodegradable films were prepared by solution blend method in the weight ratio of natural gums(Xanthan, Locust bean, Guar) for the purpose of useful bioimplants. The possibility of bioimplants, which prepared from natural gums as a skin substitute was evaluated by measuring biodegradability. This biodegradable films were inserted in the back of rats and their of biodegradability were investigated by hematological change evaluation as a function of time to the biotransformation. Rats implantation test results showed that Guar induced increments of monocyte and basophil after 48 hours of implantation. And Locust bean showed increase of monocyte and neutrophile counts after 48 hours of implantation. And Xanthan induced decrease of monocyte and neutrophile at 24 hours after implantation. Guar and Locust showed high hemoglobin contents and hematocrit after 48 hours of implantation. Guar and Locust induced some suspects of incompatibility in the tissue after 48 hours, but three were little effects to the skin inflammation at 24 hours. These values of biodegradable films, which prepared from prepared from natural gums measured in this were some satisfiable results at short period with those of ideal skin bioimplants.
The biodegradation of high concentration of benzoate by enrichment culture with Pseudomonas sp. was investigated. During 50 days continuous culture, average of removal rate of benzoate and COD were 90% and 83%, respectively. And the enzymatic activity of catechal 2,3-dioxygenase was determined in the continuous culture but not Catechol 1,2-dioxygenase. On the other hand, Pseudomonas sp in the culture was investigated with SEM and the result was revealed that the cell shape was more demage according the higher concentration of benzoate.
The purpose of this study was to more fully evaluate the potential for chlorophenol degradation in anaerobic sludge. The pH effects on the ring cleavage of phenol and dechlorination of monochlorophenol isomers and dichlorophenl isomers. This study results are as follows ; Each of the monochlorophenol isomers were degraded in anaerobic sludge. The relatives rates were 2-Chlorophenol > 3-Chlorophenol > 4-Chlorophenol. Biodegradation results for the dichlorophenol isomers in anaerobic sludge are such as 2,3-dichlorophenol and 2,5-dichlorophenol was reductively dechlorinated to 3-chlorophenol, 2,4-dichlorophenol to 4-chlorophenol, 2,6-dichlorophenol to 2-chlorophenol. The two dichlorophenol isomers which did not contain an ortho Cl substituent 3,4-dichlorophenol and 3,5-dichlorophenol were persistent during the 6-week incubation. The rate of dechlorination was enhanced by the presence of a Cl group ortho, rather than para, to the site of dechlorination.
The standardized activated sludge for the biodegradation test of anion surfactants has been produced from the collected microorganisms in the soil and the wastewaters treatment plant. The activated sludge was kept under control of the pH, dissolved oxygen, microorganisms and inoculated the basal medium flasks with LAS and LAS mixed with heavy metals [Cd(II), Cu(II), Zn(II)]. Based of results, the inhibition effect(%) of heavy metals in LAS biodegradation were 1. All 1% when LAS 30mg/l-Cd(II), Cu(II) and Zn(II) 0.1mg/l, respectively 2. All 1~10% when LAS 30mg/l-Cd(II), Cu(II) and Zn(II) 1mg/l, respectively 3. All 10~40% when LAS 30mg/l-Cd(II), Cu(II) and Zn(II) 10mg/l, respectively 4. All 30~65% when LAS 30mg/l-Cd(II), Cu(II) and Zn(II) 100mg/l, respectively And toxicity order of heavy metals to the microorganisms in LAS biodegradation were Cd〉Cu〉Zn in low concentration(0.1~1mg/l)and Cd〉Zn〉Cu in high concentration(10~100mg/l).
The effect of 60Co are discussed with regard to radiochemical destruction detergent. The study deals specifically with the effect gamma radiation from 60Co source upon aquous solution of detergent. Test on biodegradation of A B S (solium alkyl benzene sulfonate) under the waste-water prior to the detergent conversion to biodegradable surfactants. The reason for removal of A B S was their extreme environmental stability and the associateo appearance of foam in waste water treatment plants. Although the A B S are considered biodegradable the time required for biodegradation in practical with the present environmental guidelines