세계 100대 악성 침입외래종인 유리알락하늘소(Anoplophora glabripennis)와 근연종인 노랑알락하늘소(가 칭, Anoplophora horsfieldii (Hope, 1843))가 2019년 제주도에서 처음 발견된 후 2023년까지 지속적으로 확인되었 다. 본 연구는 MaxEnt 알고리즘을 기반으로 하는 생물종 분포 모델을 이용하여 19개의 기후변화 변수에 노랑알락 하늘소(가칭) 먹이식물 5종(차나무, 팽나무, 멀구슬나무, 종가시나무, 비술나무)의 변수를 추가하여 외래해충인 노랑알락하늘소(가칭)의 현재·미래의 분포 가능지역에 대한 공간적 분포 특성을 규명하고 국가적 확산을 대응 하고자 한다. 모델 예측 정확도(AUC)는 0.983으로 출현지점을 정확하게 예측하는 비율이 매우 높다고 할 수 있다. 모델 예측 정확도의 증감에 영향을 주는 환경변수 중 먹이식물의 기여도가 70%를 상회하는 것으로 나타났다. 현재 75% 이상 분포 가능지역은 전라남도 진도군 일대와 경상북도 포항시 일대로 나타났으나 2050년에는 서해안을 따라 태안군까지 동해안을 따라 북한의 고성군까지 분포가 가능한 것으로 나타났다. 또한 75% 이상 분포 가능 면적은 현재 423㎢에서 2050년에는 9,270㎢로 약 대한민국 면적의 1/10 정도 확산될 것으로 예측된다.
기후변화는 연안지역에 심각한 영향을 미치고 있으며 그 영향이 점점 증가할 것이라고 예상되는 바, 최근 기후변화 적응 및 리스크 평가에 있어 많은 연구들이 취약성과 함께 회복탄력성 개념을 이용하고 있다. 본 연구의 목적은 기후변화 적응을 위한 연안재해 회복탄력성 측정 모형을 개발하는 것이다. 측정 모형 개발에 앞서 연안재해 회복탄력성에 대한 광범위한 문헌검토를 통해 취약성과 회복 탄력성에 대한 조작적 정의와 함께 여러 피드백 메커니즘이 포함된 개념적 프레임워크를 작성하였다. 연안재해 회복탄력성 측정 모형은 네 가지 측정값(MRV, LRV, RTSPV, ND)과 연안재해 회복탄력성 복합 지수(CRI)를 포함하고 있으며, 개발된 지수는 국내 연안침식 사례에 적용되었다. 또한 지수 등급에 따른 지역적 분석이 수행되었다. 연구 결과, 네 가지 회복탄력성 측정값을 통해 각 지점이 가지는 연안침식 회복탄력성의 다양한 특성을 파악할 수 있음을 확인하였다. 연안 회복탄력성 복합 지수의 매핑 결과 서해안 및 남해안 지역에 비해 동해 안 지역들은 연안침식 회복탄력성이 상대적으로 떨어지는 것으로 나타났다. 본 연구의 회복탄력성 측정 모형은 적응 이후의 이행전략에 대한 논의를 제공하는 도구로 활용될 수 있으며, 서로 다른 취약 지역 그룹 간 정책지원에 대한 우선순위를 결정하는 데 이용 가능하다.
기후변화에 따른 서식지 감소는 생물다양성의 커다란 위협 요소 중 하나이고 생물종이 서식하는 공간적 분포에 대한 이해는 멸종위기종 관리, 생태계 복원 등 다양한 분야에서 매우 중요하다. 본 연구는 남한지역에서 서식하는 멸종위기종 Ⅰ급으로 지정된 붉은점모시나비를 대상으로 기후변화에 따른 서식분포변화를 분석하고자 한다. 이 를 위해서 최근 보전생물학, 동물생태학 등 다양한 분야에서 널리 활용되는 MaxEnt 모델을 현재시기와 미래시기 의 생물기후변수에 적용하여 잠재적 서식지 분포 변화를 평가하였다. 붉은점모시나비는 미래시기에 서식지가 감소하는 경향으로 예측되었고, 기온보다 강수량에 의한 영향이 크고, 특히 강수량 계절성에 영향이 가장 클 것으 로 분석되었다. 분석결과는 국내 생물다양성 증진에 필요한 기초자료로서 활용할 수 있을 것으로 기대된다.
국내외로 첨단 ICT 융합기술이 농업 분야에 적용되기 시작 하면서, 시설원예 설비들이 고도화되고, 스마트팜 구축 기술 및 인력이 축적되기 시작하였다. 그러나 우리나라 농촌의 경 우, 농업생산 연령의 고령화, 국내 농촌 인구의 지속적인 유출, 저출산 등으로 인하여 스마트팜 확대 및 적용에 어려움이 많 은 실정이다. 따라서 공간 및 시간에 구속을 받지 않는 간편한 농업인 교육 프로그램이 필요하며, 최근 부상하고 있는 시뮬 레이션 기술을 활용한다면 농업 교육용 시뮬레이션 툴 개발도 가능할 것으로 판단된다. 온실 환경 제어 모델을 이용한 시뮬 레이션은 다양한 지역과 기상 조건 하에서 대상 온실의 열과 물질에너지의 상호작용을 합리적으로 예측할 수 있게 해준다. 본 연구에서는 온실 환경 제어 모델을 활용하여 외부 기상 데 이터를 통해 온실의 환경 변화를 예측하고 가상의 환경 제어시스템을 통해 환경 제어 시 필요한 에너지값들을 시뮬레이션 할 수 있었다. 이러한 결과를 통해 이용자가 직접 맞춤형 환경 제어를 할 수 있도록 편의성을 고려한 사용자 인터페이스를 구축할 것이며, 실제 파프리카 재배 온실의 제어 요소들을 반 영할 수 있도록 설계될 것이다. 농업용 교육 시뮬레이션 툴을 최근 활발하게 연구가 이루어지고 있는 작물 생육 모델링 기 술 및 전산유체역학 기술과 융합하면 더욱 타당한 결과를 보 일 것이다.
본 연구는 영국기상청에서 개발된 지역기후모델 Hadley Centre Global Environmental Model version 3 regional climate model (HadGEM3-RA)로부터 모의된 동아시아 지역의 기온과 강수 결과를 평가하였다. HadGEM3-RA 는 Coordinated Regional climate Downscaling Experiment-East Asia (CORDEX-EA) Phase II 영역에서 15년 (2000- 2014년) 모의되었다. 동아시아 여름 몬순에 의한 HadGEM3-RA 강수대 분포는 Asian Precipitation Highly ResolvedObservational Data Integration Towards Evaluation of water resources (APHRODITE) 자료와 잘 일치한다. 그러나, 동 남아시아 강수는 과대 모의하며 남한에서는 과소 모의한다. 특히 모의된 여름철 강수량과 APHRODITE 강수량은 남한 지역에서 가장 낮은 상관 계수와 가장 큰 오차크기(RMSE)를 보인다. 동아시아 기온 예측은 과소 모의하며 겨울철 오 차가 가장 크다. 남한 기온 예측은 봄 동안 가장 큰 과소 모의 오차를 나타냈다. 국지적 예측성을 평가하기 위하여 서 울기상관측소 ASOS 자료와 비교한 기온과 강수의 시계열은 여름철 강수와 겨울철 기온이 과소 모의하는 공간 평균된 검증 결과와 유사하였다. 특히 여름철 강수량 증가시 과소 모의 오차가 증가하였다. 겨울철 기온은 저온에서는 과소 모 의하나 고온은 과대 모의하는 경향이 나타났다. 극한기후지수 비교 결과는 폭염은 과대 모의하여, 집중호우는 과소 모 의하는 오차가 나타났다. 수평해상도25km로 모의된 HadGEM3-RA는 중규모 대류계와 지형성 강수 예측에서 한계를 보였다. 본 연구는 지역기후모델 예측성 개선을 위한 초기 자료 개선, 해상도 향상, 물리 과정의 개선이 필요함을 지시 한다.
This study aimed to analyze causality of climatic factors that affecting the yield of whole crop barley (WCB) by constructing a network within the natural ecosystem via the structural equation model. The WCB dataset (n=316) consisted of data on the forage information and climatic information. The forage information was collected from numerous experimental reports from New Cultivars of Winter Crops (1993-2012) and included details of fresh and dry matter yield, and the year and location of cultivation. The climatic information included details of the daily mean temperature, precipitation, and sunshine duration from the weather information system of the Korea Meteorological Administration. The variables were growing days, accumulated temperature, precipitation, and sunshine duration in the season for the period of seeding to harvesting. The data was collected over 3 consecutive seasons—autumn, winter, and the following spring. We created a causality network depicting the effect of climatic factors on production by structural equation modeling. The results highlight: (i) the differences in the longitudinal effects between autumn and next spring, (ii) the factors that directly affect WCB production, and (iii) the indirect effects by certain factors, via two or more paths. For instance, the indirect effect of precipitation on WCB production in the following spring season via its effect on temperature was remarkable. Based on absolute values, the importance of WCB production in decreasing order was: the following spring temperature (0.45), autumn temperature (0.35), wintering (-0.16), and following spring precipitation (0.04). Therefore, we conclude that other climatic factors indirectly affect production through the final pathway, temperature and growing days in the next spring, in the climate-production network for WCB including temperature, growing days, precipitation and sunshine duration.
본 연구는 기계학습을 통한 수량예측모델을 이용하여 이상기상에 따른 WCM의 DMY 피해량을 산출하기 위한 목적으로 수행하였다. 수량예측모델은 WCM 데이터 및 기상 데이터를 수집 후 가공하여 8가지 기계학습을 통해 제작하였으며 실험지역은 경기도로 선정하였다. 수량예측모델은 기계학습 기법 중 정확성이 가장 높은 DeepCrossing (R2=0.5442, RMSE=0.1769) 기법을 통해 제작하였다. 피해량은 정상기상 및 이상기상의 DMY 예측값 간 차이로 산출하였다. 정상기상에서 WCM의 DMY 예측값은 지역에 따라 차이가 있으나 15,003~17,517 kg/ha 범위로 나타났다. 이상기온, 이상강수량 및 이상풍속에서 WCM의 DMY 예측 값은 지역 및 각 이상기상 수준에 따라 차이가 있었으며 각각 14,947~17,571 kg/ha, 14,986~17,525 kg/ha 및 14,920~17,557 kg/ha 범위로 나타났다. 이상기온, 이상강수량 및 이상풍속에서 WCM의 피해량은 각각 –68~89 kg/ha, -17~17 kg/ha 및 – 112~121 kg/ha 범위로 피해로 판단할 수 없는 수준이었다. WCM의 정확한 피해량을 산출하기 위해서는 수량예측모델에 이용하는 이상기상 데이터 수의 증가가 필요하다.
The objective of this study was to access the effect of climate and soil factors on alfalfa dry matter yield (DMY) by the contribution through constructing the yield prediction model in a general linear model considering climate and soil physical variables. The processes of constructing the yield prediction model for alfalfa was performed in sequence of data collection of alfalfa yield, meteorological and soil, preparation, statistical analysis, and model construction. The alfalfa yield prediction model used a multiple regression analysis to select the climate variables which are quantitative data and a general linear model considering the selected climate variables and soil physical variables which are qualitative data. As a result, the growth degree days(GDD) and growing days(GD), and the clay content(CC) were selected as the climate and soil physical variables that affect alfalfa DMY, respectively. The contributions of climate and soil factors affecting alfalfa DMY were 32% (GDD, 21%, GD 11%) and 63%, respectively. Therefore, this study indicates that the soil factor more contributes to alfalfa DMY than climate factor. However, for examming the correct contribution, the factors such as other climate and soil factors, and the cultivation technology factors which were not treated in this study should be considered as a factor in the model for future study.
Extreme temperatures and precipitations are expected to be more frequently occurring due to the ongoing global warming over the Korean Peninsula. However, few studies have analyzed the synoptic weather patterns associated with extreme events in a warming world. Here, the atmospheric patterns related to future extreme events are first analyzed using the HadGEM3-RA regional climate model. Simulations showed that the variability of temperature and precipitation will increase in the future (2051-2100) compared to the present (1981-2005), accompanying the more frequent occurrence of extreme events. Warm advection from East China and lower latitudes, a stagnant anticyclone, and local foehn wind are responsible for the extreme temperature (daily T>38 o C) episodes in Korea. The extreme precipitation cases (>500 mm day−1 ) were mainly caused by mid-latitude cyclones approaching the Korean Peninsula, along with the enhanced Changma front by supplying water vapor into the East China Sea. These future synoptic-scale features are similar to those of present extreme events. Therefore, our results suggest that, in order to accurately understand future extreme events, we should consider not only the effects of anthropogenic greenhouse gases or aerosol increases, but also small-scale topographic conditions and the internal variations of climate systems.
Invasive pests have posed an ecological threat as climate change has been accelerated, suggesting early prediction ofinvasive pests is required to minimize damages by them. As one of predictive tools, CLIMEX has been effectively usedin a few regions, including US, Australia, and Europe. It allows us to predict a species distribution on a local area inresponse to climatic conditions: and thus, potential distribution of invasive species, risk assessment of agricultural pests,and suitability of biological control agents have been tested by CLIMEX. In this study, we introduced how to use CLIMEXfor predicting a species distribution differed by climate change in terms of its functions, required data, and examplesof its application.
It is important to understand the variability of tropospheric ozone since it is both a major pollutant affecting human health and a greenhouse gas influencing global climate. We analyze the characteristics of East Asia tropospheric ozone simulated in a chemistry-climate model. We use a global chemical transport model, driven by the prescribed meteorological fields from an air-sea coupled climate model simulation. Compared with observed data, the ozone simulation shows differences in distribution and concentration levels; in the vicinity of the Korean Peninsula, a large error occurred in summer. Our analysis reveals that this bias is mainly due to the difference in atmospheric circulation, as the anomalous southerly winds lead to the decrease in tropospheric ozone in this region. In addition, observational data have shown that the western North Pacific subtropical high (WNPSH) reduces tropospheric ozone across the southern China/ Korean Peninsula/Japan region. In the model, the ozone changes associated with WNPSH are shifted westward relative to the observations. Our findings suggest that the variations in WNPSH should be considered in predicting tropospheric ozone concentrations.
Climate change is the biggest concern of the 21st century. Greenhouse gas (GHG) emissions from various sectors are attracting attention as a cause of climate change. The DeNitrification-DeComposition (DNDC) model simulates GHG emissions from cropland. To study future GHG emissions using this simulation model, various factors that could change in future need to be considered. Because most problems are from the agricultural sector, DNDC would be unable to solve the factor-changing problem itself. Hence, it is necessary to link DNDC with separate models that simulate each element. Climate change is predicted to cause a variety of environmental disasters in the future, having a significant impact on the agricultural environment. In the process of human adaptation to environmental change, the distribution and management methods of farmland will also change greatly. In this study, we introduce some drawbacks of DNDC in considering future changes, and present other existing models that can rectify the same. We further propose some combinations with models and development sub-models.
The objective of this study was to construct a forage rye (FR) dry matter yield (DMY) estimation model based on climate data by locations in South Korea. The data set (n = 549) during 29 years were used. Six optimal climatic variables were selected through stepwise multiple regression analysis with DMY as the response variable. Subsequently, via general linear model, the final model including the six climatic variables and cultivated locations as dummy variables was constructed as follows: DMY = 104.166SGD + 1.454AAT + 147.863MTJ + 59.183PAT150 4.693SRF + 45.106SRD 5230.001 + Location, where SGD was spring growing days, AAT was autumnal accumulated temperature, MTJ was mean temperature in January, PAT150 was period to accumulated temperature 150, SRF was spring rainfall, and SRD was spring rainfall days. The model constructed in this research could explain 24.4 % of the variations in DMY of FR. The homoscedasticity and the assumption that the mean of the residuals were equal to zero was satisfied. The goodness-of-fit of the model was proper based on most scatters of the predicted DMY values fell within the 95% confidence interval.
엘니뇨와 남방진동(엔소)은 변동 주기가 2-8년으로 넓게 걸쳐있으며 그 진폭과 주기 또한 천천히 변하는데 이런 특징을 각각 엔소 불규칙성과 엔소 변조라 한다. 이 연구는 비선형 대기 변동성을 나타나는 Lorenz-63 모형과 간단한 충전 진동자 모형을 결합함으로써 비선형 저차 기후모델을 개발하였다. 이 모델은 동태평양의 해수면 온도 변동의 중심 주기, 넓은 주기성, 강도의 수십 년 변동 등과 같은 관측에서 보이는 엔소 특징을 잘 재현하였다. 이것은 대기 카오스 강제력이 엔소의 불규칙성과 변조를 이끌 수 있음을 보여준다. 덧붙여 모델은 서태평양 온난역의 대류활동이 강해지면 라니냐 발생 가능성이 높아지는 것을 제시하였다. 이 모델은 간단하면서도 적도 태평양의 대기-해양 비선형 상호작용을 잘 모사하고 있기에 향후 장기 기후변화 연구에 활동될 것으로 기대된다.
This study aims to offer basic data to effectively preserve and manage pine forests using more precise pine forests’ distribution status. In this regard, this study predicts the geographical distribution change of pine forests growing in South Korea, due to climate change, and evaluates the spatial distribution characteristics of pine forests by age. To this end, this study predicts the potential distribution change of pine forests by applying the MaxEnt model useful for species distribution change to the present and future climate change scenarios, and analyzes the effects of bioclimatic variables on the distribution area and change by age. Concerning the potential distribution regions of pine forests, the pine forests, aged 10 to 30 years in South Korea, relatively decreased more. As the area of the region suitable for pine forest by age was bigger, the decreased regions tend to become bigger, and the expanded regions tend to become smaller. Such phenomena is conjectured to be derived from changing of the interaction of pine forests by age from mutual promotional relations to competitive relations in the similar climate environment, while the regions suitable for pine forests’ growth are mostly overlap regions. This study has found that precipitation affects more on the distribution of pine forests, compared to temperature change, and that pine trees’ geographical distribution change is more affected by climate’s extremities including precipitation of driest season and temperature of the coldest season than average climate characteristics. Especially, the effects of precipitation during the driest season on the distribution change of pine forests are irrelevant of pine forest’s age class. Such results are expected to result in a reduction of the pine forest as the regions with the increase of moisture deficiency, where climate environment influencing growth and physiological responses related with drought is shaped, gradually increase according to future temperature rise. The findings in this study can be applied as a useful method for the prediction of geographical change according to climate change by using various biological resources information already accumulated. In addition, those findings are expected to be utilized as basic data for the establishment of climate change adaptation policies related to forest vegetation preservation in the natural ecosystem field.
This study aims to empirically analyze the relationship between climate change elements and catch amount of coastal fisheries, which is predicted to be vulnerable to climate change since its business scale is too small and fishing ground is limited. Using panel data from 1974 to 2013 by region, we tested the relationship between the sea temperature, salinity and the coastal fisheries production. A spatial panel model was applied in order to reflect the spatial dependence of the ocean. The results indicated that while the upper(0-20m) sea temperature and salinity have no significant influence on the coastal fisheries production, the lower(30-50m) sea temperature has significant positive effects on it and, by extension, on the neighboring areas’s production. Therefore, with sea temperature forecast data derived from climate change scenarios, it is expected that these results can be used to assess the future vulnerability to the climate change.