Unlike the CFT retrofit method, The EPFT retrofit method, which fills the steel tube with engineering plastic, does not require a separate concrete forming work and is a lightweight seismic Retrofit Method. In this study, an prototype model of the EPFT was proposed, and to analyze the seismic performance, an independent specimens and a reinforced concrete column were fabricated to conduct a seismic performance test. As a result of loading test of the independent specimens, the strength was increased compared to the steel tube column without internal filling, and the ductility ratio did not significantly increase due to the falling off of the weld. As a result of loading test of the concrete reinforcement specimen, the strength, ductility ratio, and energy dissipation were increased, and the number of cracks by loading step decreased compared to the non-reinforced specimen.
Composite columns are increasingly used due to the construction of super-tall buildings and large-scale buildings. Studies on the shapes of and construction technologies for structural members using steel tubes are being conducted actively. Welded built-up CFT columns previously developed and commercialized by the authors of this study (ACT-1 columns) are structurally stable and economically efficient. However, the 1m limit in the width of the columns and their small interior spaces impose a difficulty in installing reinforcing materials and thus deteriorate the ease and efficiency with which they are constructed. This study suggests placing thick plates at the centers of the surfaces of the existing ACT-1 column and installing a binding frame (binding frames) at the central thick plates to enhance the integrity and resist lateral pressure caused by concrete casting. Finite element analysis was conducted with the variables of the number and cross-sectional size of the binding frame and the cross-sectional size of the steel tube to estimate the structural behavior of the steel tubes. Hydraulic tests were conducted to analyze load-displacement relations and identify the influence of the binding frames on the relations. The variables in the tests were the number and cross-sectional size of the binding frame, welding details, column joint and the cross-sectional size of the steel tube
This study presents an experimental study of the structural behavior for steel plate-concrete column-to-steel girder connections. Experiments were carried out to investigate the moment-rotation characteristics, failure behavior and ultimate moment capacity of these connections. The results of this experimental study involving three welded moment-resisting connections subjected to cyclic loading are presented. The specimens were fabricated at full scale to evaluate their hysteretic behavior. A description of the test specimens, the details of the joint, the test system and the testing methods are described. The test results showed that the structural behavior of these composite connections was influenced by the connection details.
유리강회플라스틱(GRP)은 재료의 자중에 비해 아주 높은 강도를 가지고 있다. 또한 부재의 두께에 따라서 투명 혹은 반투명의 효과를 거둘 수 있다. 하지만 Hand laminating의 특성상 일률적인 재료의 강도를 선뢰하기 어렵기 때문에 구조 계산 혹은 설계 시 반드시 재료 실험을 수행하여야한다. 본 논문은 두께 4mm, 높이 30m의 의장적 기둥을 구조적으로 설계하기 위한 재료 실험을 수행하였다. 또한 실험 결과에 대한 평가를 통해 DIN에서 규정하는 재료적인 강도와 비교 분석하였다. 이를 통해 규준에서 제시하는 값과의 차이를 확인했으며 실제 설계에 반영하기 위해 반드시 재료실험이 수행되어야함을 알 수 있다.
지진지역의 교량교각에 대한 설계에서 요구연성도는 가장 중요한 요소이다. 철근콘크리트 교각의 내진성능 향상을 위해서 강관으로 교각을 감싸거나 후프철근과 같은 횡방향 철근을 이용하여 교각을 구속함으로써 교각의 연성도를 증가시키는 방안이 필요하다. 강재 매입형 교각을 이용하는 것은 RC 교각 내진성능을 향상시키는 유용한 방법중의 하나이다. 이 논문에서는 강재 매입형 합성교각의 내진성능을 평가하기 위하여 단일강재와 복수강재가 매입된 합성교각에 대하여 준정적 실험을 수행하였다. H형강이 매입된 실험체와 부분 충진된 원형강관이 매입된 단면으로 구성되어 총 8기의 실험체를 제작하였다. 실험변수는 심부구속 철근비, 매입 강재의 종류와 양으로서 이에 대한 변위연성도를 분석하였다. 실험결과 강재매입으로 인하여 교각의 변형능력이 증가하였으며 특히 원형강관이 매입된 교각의 변위연성도와 횡방향 강도가 가장 크게 나타났다.
회복탄성계수(MR)로 표현되는 보조기층 재료의 탄성계수는 연성 포장체의 역학적 설계에 대단히 중요한 물성치이다. 그러나 반복재하식 MR 시험을 일상적 시험으로 적용하기에는 너무 시험과정이 복잡하고, 고가이며, 많은 시험시간을 필요로 한다. 본 연구에서는 보조기층 재료의 변형특성을 고려하여 현장공진주시험(EF-RC)을 이용한 대체 MR 시험법을 개발하였다. 보조기층 재료의 변형특성 평가를 위하여 변형률 크기 및 평균주응력의 탄성계수에 대한 영향을 조사하였다. 제안한 대체 MR 시험법으로 결정된 탄성계수와 반복재하식 MR 시험에서 결정된 회복탄성계수는 서로 잘 일치하여 제안된 기법의 효용성을 확인하였다.
회복탄성계수(MR)로 표현되는 보조기층 재료의 탄성계수는 연성 포장체의 역학적 설계에 대단히 중요한 물성치이다. 그러나 반복재하식 MR 시험을 일상적 시험으로 적용하기에는 너무 시험과정이 복잡하고, 고가이며, 많은 시험시간을 필요로 한다. 본 연구에서는 보조기층 재료의 변형특성을 고려하여 현장공진주시험(EF-RC)을 이용한 대체 MR 시험법을 개발하였다. 보조기층 재료의 변형특성 평가를 위하여 변형률 크기 및 평균주응력의 탄성계수에 대한 영향을 조사하였다. 제안한 대체 MR 시험법으로 결정된 탄성계수와 반복재하식 MR 시험에서 결정된 회복탄성계수는 서로 잘 일치하여 제안된 기법의 효용성을 확인하였다.
In this study, the effect on seismic performance of Binding Column Method(BCM) system was empirically evaluated. Four column models that were confined by different forces and one rare column model as a control were manufactured for cyclic loading test. As a result, in the column retrofitted with BCM, the ultimate displacement and load were increased about 2.5 and 2.0 times. Also, the energy-dissipating capacity of the retrofitted model was improved, compared to a rare column model.
The purpose of this study is to compare the ultrasonic pulse velocity before and after core compression test of steel fiber reinforced concrete using the ultrasonic pulse velocity method. The correlation between the column member ultrasonic pulse velocity before core test, the column member ultrasonic pulse velocity after core test, and the compressive strength of the core specimen were analyzed by fabricating a steel fiber reinforced concrete hollow column member.
Seismic performance capacity of CFT seismic retrofit method was studied through cyclic loading test. The added CFT columns share the lateral seismic force of the building with the existing RC columns to prevent building collapse. The experiment shows stable hysteric load-displacement curve.
Cyclic loading tests for a total of nine test specimens were performed to evaluate the seismic performance of the exposed steel column-base plate connections. From the tests, flexural strength, deformation capacity, energy dissipation, and initial stiffness were investigated. The primary test parameters were the thickness of base-plate, embedment length of anchor bolt, the presence of hook, and rib plates. Test results showed that flexural behavior of column base-plate connection was substantially affected by the base-plate thickness, embedment length and the number of anchor bolts. On the other hand, the effect of rib plates on the increase of the flexural performance was not observed. The initial stiffness of the test specimens was about 15% of the flexural stiffness obtained by assuming that the support is fixed. As a result, even if the exposed column base-plate is designed in accordance with current design recommendations, in case that bond strength between concrete and the anchor bolts is not sufficient, the base-plate connection showed an unaccceptable load-displacement behavior.
Seismic performance capacity of CFT seismic retrofit method was studied through cyclic loading test. The added CFT columns share the lateral seismic force of the building with the existing RC columns to prevent building collapse. The experiment shows stable hysteric load-displacement curve.
Interest in seismic performance evaluation is increased due to various earthquake in the world. Many studies about fragility analysis of structure are performing which is based on probability analysis of failure for infrastructures maintenance. In this study, probability of failure for a numerical model of prototype square-shape reinforced concrete column was calculated in accordance with amplitude of seismic ground motion. The numerical model was updated based on results from shake table tests. The probability of failure will be used for comparing with that for scaled models. The difference of fragilities from prototype and scaled model can be confirmed by the comparing in a further study.
In this study, a new type of the embedded column connection was proposed, and its flexural behavior was evaluated through a series of experimental study. Four full scale specimens for the proposed connections were constructed and tested. From the results, it was found that the flexural stiffness of the proposed connection was higher than that of the semi-rigid connection for all test specimens, and 200mm of embedment length was proper for the given test specimens in this study.
Connection details were developed for the composite column using high strength steel angles. Load-carrying capacity, deformation capacity, and load transfer mechanism of three beam-to-column joint specimens were evaluated under cyclic load tests. In the experiments, mega columns were used for the application in high-rise buildings