검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 636

        102.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study provides an economical and effective method to improve the interlaminar properties of carbon fiber-reinforced polymers (CFRPs) using aluminum trihydroxide (ATH) microparticles. ATH microparticles are cheap and are expected to show good affinity to epoxies in the matrix and sizing agents of the carbon fibers owing to the presence of three hydroxyl groups. In addition, ATH particles are reported to improve the mechanical properties of polymers when used as the reinforcement. In this study, ATH microparticles of various sizes, 1.5, 10, and 20 μm, were used to improve the interlaminar properties of the CFRPs. ATH particles with a size of 1.5 μm improved the tensile properties of the ATH/epoxy resin and did not significantly alter the curing behavior. The interfacial adhesion between the carbon fiber and the epoxy resin was also improved, and the impregnation of the resin mixture remained similar to that of the neat resin, resulting in no significant void and defect formation. Considering the above results, the resulting 1.5 μm ATH-reinforced CFRP showed improved interlaminar properties compared to CFRP without ATH. However, 10 and 20 μm ATH-reinforced CFRPs showed deteriorated interlaminar properties due to the diminished tensile properties of the resin itself and resin impregnation, which resulted in more voids and defects, despite the interfacial adhesion between the fiber and the matrix resin.
        4,000원
        103.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Low cost and scalable manufacturing of highly doped cellulose for enhanced multifunctional applications is still an issue. In this work, eco-friendly nanocomposites were fabricated by incorporating regenerated cellulose (RC) of 10, 30, and 50 wt% into an exfoliated graphene nanoplatelets (GNPs), resulting in the intercalation of GnPs. The thermal and electrical properties of hybrid nanocomposites were investigated. The structural property was conducted through scanning electron microscope and X-ray diffraction analyses. Strong frequency-dependent dielectric response was found due to the change of the permittivity and the loss tangent of nanocomposites by different content of RC, which is associated with the polarizations behavior. Non-elastic relaxation at the GNPs–RC chains interfacial areas in an alternating field was identified as the main cause of polarization losses among others. Detailed ferroelectric measurements provided the evidence of the ideal resistive behavior of the nanocomposites, which are confirmed by the resistivity measurements along the out-of-plane direction of the nanocomposite sheets.
        4,000원
        108.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The composites of carbon nanotube (CNT) supported by Sn-doped MnO2 with enhanced capacitance have been fabricated with varying dopant concentrations. The composites have been subjected to physiochemical, configurational, and morphological analyses by FTIR, UV–Vis spectroscopy, X-ray diffraction and field emission scanning electron microscopy, high resolution transmission electron microscopy and selected area electron diffraction studies. The electrochemical performance of the composite has been evaluated by cyclic voltammetry and charge/discharge techniques. Highest specific capacitances of 940 F g−1 at a current density of 0.35 A g−1 and 927 F g−1 at 5 mV s−1 in 1 M Na2SO4 electrolyte solution was achieved in the case of 5% Sn doped composite. Moreover, the electrode demonstrated good cycling performance and retaining 79.7% of the initial capacitance over 3000 cycles. The superior electrochemical performance is accredited mainly to the porous sheath hierarchical architecture, which consist of inter connected MnO2 nanoneedles uniformly coated over the CNT surface. This peculiar architecture is responsible for fast ion/electron transfer and easy access of the active material.
        4,200원
        109.
        2019.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A powder mixture of 70 wt% Al2O3 and 30 wt% hydroxyapatite (HA) is sintered at 1300 ℃ or 1350 ℃ for 2 h at normal pressure. An MgF2-added composition to make HA into fluorapatite (FA) is also prepared for comparison. The samples without MgF2 show α & β-tricalcium phosphates (TCPs) and Al2O3 phases with no HA at either of the sintering temperatures. In the case of 1,350 ℃, a CaAl4O7 phase is also found. Densification values are 69 and 78 %, and strengths are 156 and 104MPa for 1,300 and 1,350 ℃, respectively. Because the decomposition of HA produces a H2O vapor, fewer large pores of 5-6 μm form at 1,300 ℃. The MgF2-added samples show FA and Al2O3 phases with no TCP. Densification values are 79 and 87%, and strengths are 104 and 143 MPa for 1,300 and 1,350 ℃, respectively. No large pores are observed, and the grain size of FA (1-2 μm) is bigger than that of TCP (0.7 μm ≥) in the samples without MgF2. The resulting TCP/Al2O3 and FA/Al2O3 composites fabricated in situ exhibit strengths 6-10 times higher than monolithic TCP and HA.
        4,000원
        110.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, 2-hedroxyethyl methacrylate (2-HEMA) was graft synthesized on water-dispersed polyurethane using polytetramethylene ether glycoll (PTMG), and then the film of resin was prepared and the physical properties of polyurethane resin were measured. The mechanical properties of the synthesized polyurethane resin were measured by using FT-IR, UTM, adhesion performance measuring instrument. As a result of tensile strength measurement, the tensile strength of HPUD4 with high 2-HEMA content was increased to 5.05 kgf / ㎟, the elongation was measured as 285% of the HPUD1 sample not containing 2-HEMA and adhesive strength of HPUD4 sample was measured at 9.1 sec to 635 psi.
        4,000원
        111.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the aerospace field, Carbon/Cork composites have been used for rocket propulsion systems as a light weight structural component with a high bending stiffness and high thermal insulation properties. For the fabrication of a carbon composite with a heat insulation cork part, the bonding properties between them are very important to determine the service life of the Carbon/Cork composite structure. In this study, the changes in the interfacial adhesion and mechanical properties of Carbon/Cork composites under accelerated aging conditions were investigated. The accelerated aging experiments were performed with different temperatures and humidity conditions. The properties of the aged Carbon/Cork composites were evaluated mainly with the interfacial strength. Finally, the lifetime prediction of the Carbon/Cork composites was performed with the long-term property data under accelerated conditions.
        4,000원
        112.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        자외선차단 화장품은 기능성 화장품 중의 하나로서, 유·무기 자외선차단물질이 함유되어 있다. 무기계 자외선차단제는 주로 산화아연, 이산화티탄 등이 있다. 무기계 자외선차단제는 입자의 지름이 60 ~ 100 nm로 자외선 A, B의 차단능이 좋은 것으로 알려져 있다. 또한 자외선을 포함한 태양광선에 대해 비활성이 크고 안전성이 우수하다. 그리고 유기계 자외선차단제처럼 피부에 흡수 또는 축적되지 않으므로 피부 자극이나 알레르기를 유발하지 않는다. 본 연구에서는 판상 무기안료인 마이카, 자외선차단 효과를 갖는 이산화티탄 나노입자, 소수성 실리카를 각각 계면활성제로 표면처리 하였고, 각 물질의 전하 차이에 따른 비화학적인 상호 인력 작용에 의해 마이카에 이산화티탄 나노입자, 실리카를 물리적으로 흡착시켰다. 이후, 소수성 표면처리제인 실란을 표면처리 하여 소수성을 갖는 자외선 차단 판상 마이카 복합체를 제조하였다. 자외선 차단 판상 마이카 복합체는 일반적인 나노입자 이산화티탄의 응집성을 개선하고 균일한 분산에 따른 자외선차단 효과가 증대되었으며, 소수성으로 표면처리를 하여 화장품 제형에서의 분산안정성을 크게 개선할 수 있었다. 안료의 표면전하는 제타전위로 평가하였으며, 제조된 자외선차단 마이카 복합체의 특성 평가는 FE-SEM, XRD, FT-IR, UV-VIS 등으로 확인하였다.
        4,000원
        113.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 Cellulose Nano-Crystals (CNCs) 수용액을 이용하여 시멘트 페이스트의 강도 향상에 대한 실험을 수행하고 이 연구결과를 토대로 하여 CNC 혼입에 따른 섬유보강 고인성 시멘트 복합체의 강도 특성에 관한 실험을 진행하였다. 먼저, CNC의 최적 배합비를 결정하기 위한 일환으로, 골재를 포함하지 않은 시멘트 페이스트의 강도 특성을 비교하기 위해 CNC 혼입율에 따라 수용액을 제조하였다. CNC 혼입율은 시멘트 대비 0.1, 0.2, 0.4 vol.%를 주요 변수로 하였고, 이에 따른 휨강도는 0.4 vol.%에서 플레인 시험체와 비교시 최대 8 배까지 강도가 증가하는 것을 확인할 수 있었다. 이 연구결과와 기존 연구결과를 토대로 하여, 본 연구에서는 0.4, 0.8 및 1.2 vol.%의 CNC 혼입율을 주요변수로 한 강섬유와 아마섬유를 활용한 섬유보강 고인성 시멘트 복합체 시험체를 제작한 후 역학적 강도 특성을 평가하여 섬유보강 고인성 시멘트 복합체의 구조적 성능을 규명하였다.
        4,000원
        116.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Conductive and dielectric SiC are fabricated using electroless plating of Ni–Fe films on SiC chopped fibers to obtain lightweight and high-strength microwave absorbers. The electroless plating of Ni–Fe films is achieved using a two-step process of surface sensitizing and metal plating. The complex permeability and permittivity are measured for the composite specimens with the metalized SiC chopped fibers dispersed in a silicone rubber matrix. The original noncoated SiC fibers exhibit considerable dielectric losses. The complex permeability spectrum does not change significantly with the Ni–Fe coating. Moreover, dielectric constant is sensitively increased with Ni–Fe coating, owing to the increase of the space charge polarization. The improvements in absorption capability (lower reflection loss and small matching thickness) are evident with Ni–Fe coating on SiC fibers. For the composite SiC fibers coated with Ni–Fe thin films, a -35 dB reflection loss is predicted at 7.6 GHz with a matching thickness of 4 mm.
        3,000원
        117.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, we develop a conductive copper/carbon nanomaterial additive and investigate the effects of the morphologies of the carbon nanomaterials on the conductivities of composites containing the additive. The conductive additive is prepared by mechanically milling copper powder with carbon nanomaterials, namely, multi-walled carbon nanotubes (MWCNTs) and/or few-layer graphene (FLG). During the milling process, the carbon nanomaterials are partially embedded in the surfaces of the copper powder, such that electrically conductive pathways are formed when the powder is used in an epoxy-based composite. The conductivities of the composites increase with the volume of the carbon nanomaterial. For a constant volume of carbon nanomaterial, the FLG is observed to provide more conducting pathways than the MWCNTs, although the optimum conductivity is obtained when a mixture of FLG and MWCNTs is used.
        4,000원
        118.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Molybdenum silicide has gained interest for high temperature structural applications. However, poor fracture toughness at room temperatures and low creep resistance at elevated temperatures have hindered its practical applications. This study uses a novel powder metallurgical approach applied to uniformly mixed molybdenum silicidebased composites with silicon carbide. The degree of powder mixing with different ball milling time is also demonstrated by Voronoi diagrams. Core-shell composite powder with Mo nanoparticles as the shell and β-SiC as the core is prepared via chemical vapor transport. Using this prepared core-shell composite powder, the molybdenum silicide-based composites with uniformly dispersed β-SiC are fabricated using pressureless sintering. The relative density of the specimens sintered at 1500oC for 10 h is 97.1%, which is similar to pressure sintering owing to improved sinterability using Mo nanoparticles.
        4,000원
        119.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: Until now, the maintenance of road pavement has mostly involved passive maintenance methods with full maintenance only performed at the end of road life. Recently, there has been growing interest in solving the problem of reflection cracks that occur at joints during application of the overlay method of old concrete pavement. This study was aimed at solving the problem of reflective cracks around expansion joints and at evaluating the durability performance of pavement with interlayer reinforced-composites waterproofing system for concrete overlay. METHODS: This study was conducted to investigate the effect of an interlayer on prevention of reflection cracks and to improve the tensile, compressive, shear, and vertical stresses due to plastic deformation and vehicle cyclic loading. An integrated overlaying layer (5cm or 8cm) was used to evaluate the applicability according to objective indicators. RESULTS and CONCLUSIONS : It was confirmed that cracks did not occur in the section of the line overlaid by the interlayer and that the reflection cracks generated by the action of the lower layer sufficiently absorbed the horizontal movement of the asphalt 5cm pavement overlay. It also suppressed, or at least delayed, the progress of the vertical cracks. The interlayer reinforced composite membrane waterproofing method used in the packing layer, showed through repeated fatigue test results that the accumulated fatigue crack resistance was greater than 120,000 times.
        4,000원
        120.
        2018.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Intermetallic compound matrix composites have been expected to be established as high temperature structural components. Ni3Al is a representative intermetallic alloy, which has excellent ductility even at room temperature by adding certain alloying elements. Ni3Al matrix composites with aluminum oxide particles, which are formed by the in-situ reaction between the alloy and aluminum borate whiskers, are fabricated by a powder metallurgical method. The addition of aluminum borate whiskers disperses the synthetic aluminum oxide particles during sintering and dramatically increases the strength of the composite. The uniform dispersion of reaction synthesized aluminum oxide particles and the uniform solution of boron in the matrix seem to play an important role in the improvement in strength. There is a dramatic increase in strength with the addition of the whisker, and the maximum value is obtained at a 10 vol% addition of whisker. The Ni3Al composite with 10 vol% aluminum oxide particles 0.3 μm in size and with 0.1 wt% boron powder fabricated by the conventional powder metallurgical process does not have such high strength because of inhomogeneous distribution of aluminum oxide particles and of boron. The tensile strength of the Ni3Al with a 10 vol% aluminum borate whisker reaches more than twice the value, 930 MPa, of the parent alloy. No third phase is observed between the aluminum oxide and the matrix.
        3,000원