Efficiently detecting the nearest navigational dangers in Electronic Chart Display and Information Systems (ECDIS) remains pivotal for maritime safety. However, the software implementation of ADMAR(Automatic Distance measurement and Ranging) functionality faced challenges, necessitating extensive computations across ENC cells and impacting real-time performance. To address this, we present a novel method employing dynamic programming. Our proposed algorithm strategically organizes nodes into a tree structure, optimizing the search process towards nodes likely to contain navigational hazards. Implementation of this method resulted in a notable sevenfold reduction in computation time compared to the conventional Brute Force approach. Our study established a direct correlation between the ADMAR functionality and node count, achieving error margins deemed acceptable for practical navigation scenarios. Despite this theoretical progress, minor errors in results prompt further refinement. Consequently, future iterations will explore varying values for N, considering hierarchy and cell sizes to enhance algorithmic precision. This research signifies a potential advancement in optimizing navigational danger detection within ECDIS, offering a promising avenue for improved efficiency. By introducing a dynamic programming-based approach, we have streamlined the detection process while acknowledging the scope for algorithmic refinement in subsequent studies. Our findings underline the feasibility of employing dynamic programming to enhance navigational danger detection, emphasizing its potential in ensuring maritime safety. This work lays a foundation for future research endeavors, aiming to fine-tune algorithms and advance navigational safety measures in ECDIS.
한국 천일염 생산 지역의 인구는 빠르게 고령화되고 있어 생산 노동자가 줄고 있는 추세이다. 소금 포집 작업은 천일염 생산 과정에서 가장 많은 노동력을 필요로 한다. 기존의 포집 장치는 사람의 작동 및 운전이 필요하여 상당한 노동력이 필요해서, 천일염 무인 포집장치를 개발하여 생산 노동자의 노동력을 감소시키고자 한다. 천일염 포집장치는 색상 검출을 통해 소금의 포집 상황과 염전에서의 위치를 파악하도록 설계되었기 때문에, 포집장치의 색상 검출 성능이 중요한 요소이다. 그래서 색상 검출 성능 향상을 위해 이미지 처리 를 이용한 알고리즘을 연구하였다. 알고리즘은 입력 이미지를 크기 재조정, 회전 및 투시 변환을 이용하여 around-view 이미지를 생성하고, RoI를 설정하여 해당 영역만 HSV 색상 모델로 변환하고 논리곱 연산을 통해 색상 영역을 검출한다. 검출 된 색상영역은 형태학적 연산을 이용하여 검출 영역을 확장하고 노이즈를 제거하여 컨투어와 이미지 모멘트를 이용하여 검출영역의 면적을 계산하고 설정된 면적과 비 교하여 염판에서 포집장치의 위치 경우를 결정한다. 성능 평가는 알고리즘을 적용한 최종 검출 색상의 계산 면적과 알고리즘의 각 단계 의 검출 색상의 면적을 비교하여 평가하였다. 평가 결과 소금을 검출하는 흰색의 경우 최소 25%에서 최대 99% 이상, 빨간색의 경우 최소 44%에서 최대 68%, 파란색과 녹색은 평균적으로 각각 7%와 15% 검출면적 증가가 있어 색상 검출 성능이 향상되었음을 확인할 수 있었으 며, 이를 무인 천일염 포집장치의 무인작업 수행을 위한 위치 확인에 적용 가능할 것으로 사료된다.
본 논문은 딥러닝 알고리즘을 이용하여 딸기 영상 데이터의 병충해 존재 여부를 자동으로 검출할 수 있는 서비스 모델을 제안한다. 또한 병징에 특화된 분할 이미지 데이터 세트를 제 안하여 딥러닝 모델의 병충해 검출 성능을 향상한다. 딥러닝모델은 CNN 기반 YOLO를 선정하여 기존의 R-CNN 기반 모델의 느린 학습속도와 추론속도를 개선하였다. 병충해 검 출 모델을 학습하기 위해 일반적인 데이터 세트와 제안하는 분할 이미지 데이터 세트를 구축하였다. 딥러닝 모델이 일반 적인 학습 데이터 세트를 학습했을 때 병충해 검출률은 81.35%이며 병충해 검출 신뢰도는 73.35%이다. 반면 딥러닝 모델이 분할 이미지 학습 데이터 세트를 학습했을 때 병충해 검출률은 91.93%이며 병충해 검출 신뢰도는 83.41%이다. 따 라서 분할 이미지 데이터를 학습한 딥러닝 모델의 성능이 우 수하다는 것을 증명할 수 있었다.
본 연구에서는 콘크리트 이미지에서 균열의 크기와 위치를 검출하는 알고리즘을 개발하였다. 균열은 총 9단계로 자 동 검출되었으며, 기본 기능은 매트랩 프로그램의 기능이었다. 5단계와 8단계에서는 균열 검출 정확도를 높이기 위해 사용자 알고리즘을 추가하였으며, 균열 영상과 비균열 영상을 각각 1,000개씩 사용하였다. 균열 이미지에서는 균열이 100% 검출됐지만 품질 측면에서 나쁘지 않은 결과를 제외하더라도 91.8%의 결과가 매우 양호했다. 또한, 균열되지 않은 이미지의 정확도도 94.7%로 매우 양호했다. 이에 본 연구에서 제시한 균열검출 알고리즘은 콘크리트 우물 균열의 위치와 크기를 검출할 수 있을 것으로 기대된다.
본 연구는 선박용 공기압축기의 상태기반보전 시스템에 필요한 이상치 탐지 알고리즘 적용에 대한 실험적 연구로서 고장모사 실험을 통해 시계열 전류 센서 데이터를 이용한 이상탐지 적용 가능성을 확인하였다. 고장 유형 10개에 대해 실험실 규모의 고장 모사 실험을 수행하여 정상 운전데이터와 고장 데이터를 구축하였다. 실험 결과 구축된 이상탐지 모델은 시계열 데이터의 주기에 변화를 유발하는 이상은 잘 탐지하는 반면 미세한 부하 변동에 대한 탐지 성능은 떨어졌다. 또한 오토인코더를 이용한 시계열 이상탐지 모델은 입력 시 퀀스의 길이와 초모수 조정에 따라 이상 탐지 성능이 상이한 것으로 나타났다.
본 연구에서는 영상기반 딥러닝 및 이미지 프로세싱 기법을 이용한 볼트풀림 손상검출 기법을 제안하였다. 이를 위해 먼저, 딥러닝 및 이미지 프로세싱 기반 볼트풀림 검출 기법을 설계하였다. 영상기반 볼트풀림 검출 기법은 볼트 이미지 검출 과정 및 볼트풀림 각도 추정 과정으로 구성된다. 볼트 이미지의 검출을 위하여 RCNN기반 딥러닝 알고리즘을 이용하였다. 영상의 원근왜곡 교정을 위해 호모그래피 개념을 이용하였으며 볼트풀림 각도를 추정을 위하여 Hough 변환을 이용하였다. 다음으로 제안된 기법의 성능을 검증을 위하여 거더의 볼트 연결부 모형을 대상으로 볼트풀림 손상검출 실험을 수행하였다. 다양한 원근 왜곡 조건에 대하여 RCNN 기반 볼트 검출기와 Hough 변환 기반 볼트풀림 각도 추정기의 성능을 검토하였다.
Inter-granular Bright Points (igBPs) are small-scale objects in the Solar photosphere which can be seen within dark inter-granular lanes. We present a new algorithm to automatically detect and extract igBPs. Laplacian and Morphological Dilation (LMD) technique is employed by the algorithm. It involves three basic processing steps: (1) obtaining candidate "seed" regions by Laplacian; (2) determining the boundary and size of igBPs by morphological dilation; (3) discarding brighter granules by a probability criterion. For validating our algorithm, we used the observed samples of the Dutch Open Telescope (DOT), collected on April 12, 2007. They contain 180 high-resolution images, and each has a 85×68arcsec2 85×68arcsec2 field of view (FOV). Two important results are obtained: first, the identified rate of igBPs reaches 95% and is higher than previous results; second, the diameter distribution is 220±25km 220±25km , which is fully consistent with previously published data. We conclude that the presented algorithm can detect and extract igBPs automatically and effectively.
자동사고검지 알고리즘의 대부분은 사고가 발생했을 때 사고로 검지하지 못하고, 혼잡으로 검지하는 경우가 많다는 문제점을 가지고 있다. 또한 교통정보센터 운영자들은 교통사고검지시스템을 운영하면서 대부분 CCTV 육안감시 또는 운전자들의 신고에 의존하여 사고처리를 하고 있는 실정이다. 그 이유는 현재 운영되고 있는 교통사고검지시스템에서는 실제 사고가 아닌데도 불구하고, 사고라는 오검지 경고가 많이 발생되어 시스템 전체의 신뢰도가 떨어진다는 문제점이 있기 때문이다. 다시 말해 교통사고검지시스템의 알고리즘은 검지율(Detection probability)이 높아야 함과 동시에, 오검지율(False alarm probability)은 낮아야 하고, 정확한 사고지점과 시간을 검지해 낼 수 있어야 한다. 이에 본 연구는 검지율을 높이고 동시에, 오검지율을 낮추는 방법으로 기 개발된 가우시안 혼합모델(Gaussian Mixture Model)과 개별차량 Tracking을 이용하여 개발한 사고검지 알고리즘을 교통정보센터 관리시스템(Center Management System)에 적용하고, 실제 교통상황에서 사고검지율과 오검지의 빈도를 측정하여 그 효과를 검증 및 평가하고자 한다.
전단빌딩에 발생한 손상 추정에 있어서 대상 구조물의 물성치를 가정하고 이상화한 모델을 이용한 역해석이 필요하다. 강성행렬을 이용하는 고전적인 손상추정 방법에 비해 유연도 행렬을 이용한 손상추정은 구조물의 저차모드를 이용하기 때문에 비교적 정확한 값을 계산할 수 있기 때문에 더 효과적으로 알려져 있다. 이 논문에서는 손상추정을 위한 알고리즘으로 유전자 알고리즘(Genetic Algorithm, GA)을 도입하였고, 구조 응답에서 취득할 수 있는 유연도 행렬을 이용하여 역해석을 통한 손상추정 기법을 소개하고 있다. 제안된 손상추정 기법은 전단빌딩의 강성에 대한 정확한 정보가 없는 상황에서 전단빌딩의 손상으로 인한 실제 강성변화량을 추정하도록 하였다. 더불어 open source code인 OPENSEES를 이용하여 전단빌딩 수치해석을 통해 제안된 손상추정 기법의 효율성을 검증하였다.
구조물의 진동 자료를 이용하는 유전알고리즘(GA) 기반 손상검색기법에 있어, 사용되는 모드 특징의 선택은 손상검색 결과의 정확도를 높이는데 중요하다. 본 연구의 목적은 고유진동수와 모드변형에너지를 이용하여 손상검색의 정확도를 높이는 것이다. 이와 같은 연구 목적을 달성하기 위하여 다음과 같은 연구를 수행하였다. 먼저, 모드 변형에너지를 유도하고 고유진동수와 모드변형에너지를 이용하는 새로운 GA 기반 손상검색기법을 제안하였다. 다음으로 제안된 기법의 효율성을 검증하기 위하여 양단 자유보의 손상시나리오를 제시하고, 손상시나리오에 따른 진동모드 실험을 실시하였다. 마지막으로 실험 자료를 바탕으로 제안된 기법과 기존의 고유진동수와 모드형상을 이용하는 기법으로 손상검색을 실시하여 결과를 비교하였다.
In a four-wheel independent drive platform, four wheels and motors are connected directly, and the rotation of the motors generates the power of the platform. It uses a skid steering system that steers based on the difference in rotational power between wheel motors. The platform can control the speed of each wheel individually and has excellent mobility on dirt roads. However, the difficulty of the straight-running is caused due to torque distribution variation in each wheel’s motor, and the direction of rotation of the wheel, and moving direction of the platform, and the difference of the platform’s target direction. This paper describes an algorithm to detect the slip generated on each wheel when a four-wheel independent drive platform is traveling in a harsh environment. When the slip is detected, a compensation control algorithm is activated to compensate the torque of the motor mounted on the platform to improve the trajectory tracking performance of the platform. The four-wheel independent drive platform developed for this study verified the algorithm. The wheel slip detection and the compensation control algorithm of the platform are expected to improve the stability of trajectory tracking.