본 논문에서는 축하중과 폭발하중을 동시에 받는 철근콘크리트 부재의 구조 거동을 분석하였다. 기본적인 폭발하중을 받는 패널 실험 데이터, 축하중과 폭발하중을 받는 철근콘크리트 기둥 실험데이터를 이용하여 비선형 동적해석 모델링을 검증하였다. 축하중의 적용에 있어서 Autodyn은 동적해석만을 위한 프로그램이기 때문에 축하중과 같은 정적 하중에 대한 초기 응력 상태를 모사하는 해석 절차를 제시하였다. 축하중비 0%~70% 구간과 TNT 등가량에 의존한 환산거리 1.1~2.0에 해당하는 매개변수를 선정하여 총 80개의 비선형 동적 유한요소해석을 진행하였다. 축하중비와 환산거리의 변화를 통해 손상정도와 최대 변위 및 회전각으로 구조 거동을 비 교 분석한 결과로 원거리 폭발하중에서 축하중을 받는 기둥의 강성 증가로 최대 변위가 감소한다. 결과적으로 축하중비 10%~30%, 30%~50%, 50% 이상의 영역 3가지로 구조적 거동 분류가 가능함에 따라 내폭 설계 모델 개발에 활용될 수 있을 것으로 보인다.
The Gyeongju and Pohang earthquakes caused damages to many cultural properties; particularly, stone pagoda structures were significantly damaged among masonry cultural properties. To preserve these structures, it is necessary to understand their dynamic behavior characteristics under earthquakes. Analyses on such areas as deformation, frequency, maximum acceleration, permanent displacement, sliding, and rocking have to be performed. Although many analytical studies have already been conducted, dynamic behavior studies based on experiments are insufficient. Therefore, this study analyzed dynamic behavior characteristics by performing a shaking table experiment on a three-story stone pagoda structure at the Cheollongsa temple site damaged by the Gyeongju earthquake. As a result of the experiment, the displacements of stylobates did not occur significantly, but the tower body parts rotated. In particular, the rotation of the 1F main body stone was relatively larger than that of the other chief body stones because the 1F main body stone is relatively more slender than the other parts. In addition, the decorative top was identified as the component most vulnerable to sliding. This study found that the 1F main body stone is vulnerable to rocking, and the parts located on the upper part are more vulnerable to sliding.
Communication facilities play an essential role in disaster situations. Therefore, communication facilities need to have structural and functional safety during and after earthquakes. Recently, technology for partial seismic isolation has been increasing to protect data facilities and communication equipment installed in buildings from earthquakes. However, excessive displacement may occur in the seismic isolator during an earthquake due to the resonance between the building and the seismic isolator having long-period characteristics, which may cause overturning and separation of the installed equipment. In this study, analytical and experimental studies were conducted to evaluate the safety of seismic isolators installed in high-rise buildings. It was confirmed that damages might occur in buildings' seismic isolator, with resonance characteristics of less than 1 Hz.
Dynamic behavior of piezoelectric ZnO nanowires is investigated using finite element analyses (FEA) on FE models constructed based on previous experimental observations in which nanowires having aspect ratios of 1:2. 1:31, and 1:57 are obtained during a hydrothermal process. Modal analyses predict that nanowires will vibrate in lateral bending, uniaxial elongation/contraction, and twisting (torsion), respectively, for the three ratios. The natural frequency for each vibration mode varies depending on the aspect ratio, while the frequencies are in a range of 7.233 MHz to 3.393 GHz. Subsequent transient response analysis predicts that the nanowires will behave quasi-statically within the load frequency range below 10 MHz, implying that the ZnO nanowires have application potentials as structural members of electromechanical systems including nano piezoelectric generators and piezoelectric dynamic strain sensors. When an electric pulse signal is simulated, it is predicted that the nanowires will deform in accordance with the electric signal. Once the electric signal is removed, the nanowires exhibit a specific resonance-like vibration, with the frequency synchronized to the signal frequency. These predictions indicate that the nanowires have additional application potential as piezoelectric actuators and resonators.
This study evaluates safety assessment before and after repair of Seonamsa temple seungseon bridge, which refer to the representative Hongye bridge in Korea. In this approach natural frequency of the structure were considered in the modeling procedure. Trial & error method is applied to obtain the approximate natural frequency before and after retrofit construction. Stiffness of the actual structure was examined to account for the dynamic characteristics of Hongye bridge measured in the field and adjusting parameters in computer modeling. The safety and usability of the stone structure in terms of load bearing capacity and displacement were examined.
In fisheries, the importance of designing efficient fish cages is being emphasized as aquaculture has become more production than capture fishing. Particularly, the gravity cage system is one of the popular fish cage system in Korea. Currently, gravity cages of various shapes and sizes are being widely designed and installed in offshore and inland seas. The cage is subject to external forces, such as currents and waves, and the shape of the structure and tension on the ropes changes according to these external forces. Thus, it is important to accurately calculate these dynamic behavior, including the external forces and tension on the structure during the design stage. In this study, three types of cage systems with an equal internal volume of 8000 m3 were analyzed using mass-spring models and their behavior was interpreted through simulations. These simulations were used to analyze the behavior and tension of the ropes in response to currents and waves to aid in the selection of individual cage sizes for a given total volume. The numerical calculation results indicate that depending on the flow rate, the most resistant system is System 1, which has eight strays, and System 2 and System 3 have 69.4% and 54.8% of the resistance of System 1. Further, total resistance increased as the number of cages increased for all flow rates.
Recently, the occurrence frequency of earthquake has increased in Korea, and many cultural assets have been damaged. Cheomseongdae is a valuable cultural assets that must be preserved historically and culturally. But, the masonry structure such as Chemseongdae is vulnerable to lateral forces. Therefore, in this study, structural modeling and dynamic analysis are performed to reflect the ground state and structural form of Cheomseongdae. Also, discrete element analysis technique is applied and dynamic behavior characteristics are analyzed according to earthquake load. For this purpose, displacements and stresses according to locations are reviewed and then swelling and distortion are analyzed.
This paper deals with the stability of industrial robot arms with six axes and six degrees of freedom. The robot arm used was IRB120, a product of ABB company, which is used in the real industry, by using the commercial “DAFUL” which is a simulation program that can analyze the dynamic behavior. DAFUL was applied to the robot arm to control the motion by applying the load to the robot arm and then the structural analysis of the robot arm was performed during the analysis time. As a result of the analysis of the robot arm, the stress and displacement acting on the elliptic model and the acting torque and force were analyzed. Based on the analysis results, stability was checked with reference to IRB120 product catalog.
In this study, an algorithm applying deep learning to the truss structures was proposed. Deep learning is a method of raising the accuracy of machine learning by creating a neural networks in a computer. Neural networks consist of input layers, hidden layers and output layers. Numerous studies have focused on the introduction of neural networks and performed under limited examples and conditions, but this study focused on two- and three-dimensional truss structures to prove the effectiveness of algorithms. and the training phase was divided into training model based on the dataset size and epochs. At these case, a specific data value was selected and the error rate was shown by comparing the actual data value with the predicted value, and the error rate decreases as the data set and the number of hidden layers increases. In consequence, it showed that it is possible to predict the result quickly and accurately without using a numerical analysis program when applying the deep learning technique to the field of structural analysis.
등기하 해석법을 이용한 고유치 해석은 유한요소를 이용한 결과보다 고차 모드에서 더 정확한 결과를 주는 것으로 알려져 있다. 이는 유한요소법이 차수에 상관없이 요소 간에 C0연속성을 보이는 것과 다르게 등기하 해석법은 p차 요소에 대해서 Cp-1의 연속성을 보장하기 때문이다. 본 논문에서는 이러한 장점을 이용하여 등기하 해석법을 이용하여 모드 기반의 축소 모델을 구성하고 동적 거동 해석을 수행하였다. 축소 모델 구성을 위해 Craig-Bampton(CB) 기법을 적용하였다. 수치 예제를 통해 간단한 봉 요소에 대해 등기하 해석법과 유한요소 해석법을 적용하여 요소의 차수에 따른 고유치 해석 결과를 비교 분석하였다. 등기하 해석법에 중첩 노트를 허용하여 요소 간 연속성을 조절하고, 요소 간 연속성이 줄어듦에 따라 고차 모드에서의 수치 오차가 커짐을 확인하였다. 동적 거동 해석을 위한 축소 모델에 높은 차수의 외력이 주어지는 경우 요소간 연속 성이 높은 등기하해석법을 사용하면, 해의 정확도를 높일 수 있다.
본 논문에서는 수중폭발(UE: underwater explosion)에 의한 해중터널(SFT: submerged floating tunnel)의 동적거동을 양 해법(explicit)를 이용하는 LS-DYNA에 의한 유한요소해석을 통하여 분석하였다. SFT의 유한요소모델은 원형단면의 강재 라이너에 콘크리트가 채워진 복합재 원형단면으로 고려되었다. 해중터널 시스템의 중앙부 100m 구간은 탄소성재료를 고려 한 솔리드(solid)요소로 상세하게 모델링하였으며, 양측 방향으로 각각 1km 구간에 대해서는 탄성재료를 고려하여 빔(beam) 요소로 이상화하여 모델링하였다. 사선계류시스템은 케이블(cable)요소를 적용하였으며, 수중폭발에 의한 동적거동시 수리동 적질량의 영향을 고려하기 위하여 원형단면에 대한 추가질량을 고려하였다. 또한 부력과 같은 상시하중을 초기조건으로 고려하기 위하여 동적완화해석(dynamic relaxation analysis)를 수행하였다. UE는 부력비(B/W)와 폭발지점으로부터 거리의 변화에 대해서 고려하였으며, 폭발의 규모는 천안함 합동조사보고서(2010)를 참조하여 TNT 360kg로 결정하였다. 수중폭발 해석결과, 폭발지점으로부터 SFT까지 거리는 관입량, 충격압력의 크기와 반비례 관계에 있고, 부력비(B/W)가 커질수록 계류장력도 커짐을 확인하였다. 그러나 사선계류라인의 계류각 변화는 SFT의 수평거동, 관입량, 계류력, 충격압력과의 연관성 을 찾을 수가 없었다.
The arched stone bridge has been continuously deteriorated and damaged by the weathering and corrosion over time, and also natural disaster such as earthquake has added the damage. However, masonry stone bridge has the behavior characteristics as discontinuum structure and is very vulnerable to lateral load such as earthquake. So, it is necessary to analyze the dynamic behavior characteristics according to various design variables of arched stone bridge under seismic loads. To this end, the arched stone bridge can be classified according to arch types, and then the discrete element method is applied for the structural modelling and analysis. In addition, seismic loads according to return periods are generated and the dynamic analysis considering the discontinuity characteristics is carried out. Finally, the dynamic behavior characteristics are evaluated through the structural safety estimation for slip condition.
Since the road management paradigm has changed into the user-oriented circumstance, the functionality of the crucial road maintenance factors became important than before. Among these factors, the roughness directly related to the ride quality for driver became to get more attention. IRI(International Roughness Index) is recently the most widely used roughness indices in the world. IRI is a reasonable index that reflects the vertical displacement(bounce) of vehicle as the road profile changes. Since IRI reflects the vertical behavior of vehicle, it reflects ride quality indirectly. However, there are various rotational behaviors such as roll, yaw, and pitch in addition to the vertical displacement. Profiles, which MRI range was 1.13-4.12m/km, were measured in five sections and the profiles were entered into CarSIM to simulate vehicle behavior. As a result, the pitch was the largest in all sections, followed by roll and yaw, relatively. Especially, the amount of yaw is about 5% of the pitch or about 7% of the roll. The behavior of moving vehicle was measured using INS(inertial navigation system) and accelerometer in the section where the road surface profile was measured. As a result, as in the simulation, the pitch was the largest in all the sections and the amount of yaw is only about 7% of the pitch or about 18% of the roll. Field experiments were conducted to analyze the effect of the rotational behavior of the actual driving vehicle on the ride quality. 33 panels evaluated the ride quality on a ten-point scale while driving on 35 sections with various roughnesses. 35 test sections were selected considering the roughness distribution of actual expressway. The panel was selected considering age, driving experience, gender, and expertise. Of the total 1,155 responses, 964 responses were used for the analysis, except 191 responses measured at low driving speeds. In addition, the amount of vehicle behavior and road surface profile were measured using INS and laser. As a result of correlation analysis between MPR(mean panel rating) and vehicle behavior, correlation coefficient of bounce was the highest with 0.814, and the order of pitch was 0.798, and roll was 0.734, relatively. As a result of regression analysis for predicting ride quality, regression model combining bounce and roll was statistically the most suitable. This model is expected to reflect the ride quality more effectively because it can consider the vehicle behavior due to the longitudinal profile change of the road surface as well as the vehicle behavior due to the difference between the left and right wheel path road profile.
An Automatic feed mechanism is one of the most important systems that make up the air defence gun. The System which consists of consecutive mechanisms from a magazine to the breech of automatic machine gun(Dual) carries ammunitions through the feeding pass with a high speed by the electric boosters to synchronize with gun firing speed. In order to feed the rounds smoothly without jamming, it is necessary to optimize the design of the driving torque needed to carry them and to get a proper distribution of power between rounds after performing mathematical calculation. In this study, in order to predict and prevent malfunctions of feeding and unloading ammunition, we have developed an optimal computational model using CATIA and multi-body dynamics software, ADAMS.
PURPOSES: This study aims to evaluate the effects of vehicle dynamic behaviors on ride quality. METHODS: Simulation and field test were conducted to analyze the behavior of a driving vehicle. The simulation program CarSIM was applied and an INS (Inertial Navigation System) was used for field experiments. A small simulator was developed to simulate vehicle behavior such as roll, pitch, and bounce. The panels evaluated the ride quality in five stages from “very satisfied”to “very dissatisfied.”Experiments were conducted on a total of 144 cases of vehicle behavior combinations. RESULTS: In both simulation and field tests, pitch is the largest and yaw the smallest. Especially in the field test, the amount of yaw is very low, about 7% of pitch and 18% of roll. The sensitive and extensive analysis conducted related ride quality with changing the frequency and amplitude. It was found that the most sensitive frequency range is 8 Hz across all amplitudes. Moreover, the combination of the roll and bounce was most sensitive to the ride quality at the low-frequency range. CONCLUSIONS: This result show that the vertical vehicle behavior (bounce) as well as the rotational behavior (roll and pitch) are highly correlated with ride quality. Therefore, it is expected that a more reasonable roughness index can be developed through a combination of vertical and rotational vehicle behavior.