This study proposes a surrogate model framework that integrates finite element analysis and deep learning to rapidly estimate equivalent material properties of patterned sheets. Conventional homogenization methods can only be applied after the pattern geometry has been finalized, requiring additional modeling and simulation. In contrast, the proposed approach establishes a surrogate model in advance, enabling the immediate estimation of equivalent material properties once the pattern geometry is defined. A dataset of 5,000 cases was generated using simulations, and Bayesian hyperparameter optimization was applied to improve model performance. The surrogate model achieved R² values above 0.99 for all target properties, confirming high internal consistency. Experimental validation with patterned STS304 specimens yielded meaningful results, with all errors remaining within 15%, which demonstrates the reliability of the proposed surrogate model despite minor deviations caused by fabrication imperfections and limited training data. Despite these limitations, the proposed system enables instant estimation of equivalent properties from pattern geometries, offering significant reduction in computational cost and design time. This approach enhances design reliability and provides a practical tool for the application of patterned materials in industrial engineering.
This study investigates the thermo-mechanical behavior and residual stress characteristics of friction stir welding (FSW) in an aluminum inverter housing using finite element analysis (FEA). FSW experiments were first conducted under various tool rotation and traverse speed conditions, and temperature histories were measured using K-type thermocouples. The optimal process condition was identified through tensile testing, and the heat input was estimated by comparing experimental and numerical results. The estimated heat source was incorporated into a transient thermal elasto-plastic analysis to evaluate deformation and residual stresses in an inverter housing model. The results indicated that residual stress distributions varied depending on the welding start position. In particular, when welding started at P3 (near thick ribs and bosses) residual stresses were reduced by approximately 30% compared to P1, owing to the higher local stiffness and enhanced heat dissipation that mitigated temperature gradients. Conversely, welding initiated at P1, a flat region with insufficient reinforcement, resulted in higher stress concentrations. These findings confirm that the welding start position significantly influences residual stress behavior in inverter housings and provide fundamental insights for developing residual stress control strategies in FSW of large-scale components.
마늘의 파종 작업에 투입되는 노동력 및 노동시간은 마늘 재배 중 많은 비중을 차지한다. 이에 마늘 파종을 위한 기계가 개발 및 이용되고 있지만, 이중 파종과 결주 등으로 인해 동일 토지 대비 인력 파종에 비해 생산성이 감소하는 문제가 발생하고 있다. 따라서, 본 연구에서는 마늘의 기계 파종 생산성 향상을 목표로 파종기 결주율에 영향을 미칠 것으로 예상되는 파종시스템의 설계 및 운용 변수에 대한 이산요소 시뮬레이션을 수행하였다. 파종시스템에 이용되는 버킷의 형상 및 크기와 마늘의 이산요소모델은 기존 연구 결과를 활용하였으며, 이를 바탕으로 버킷의 회전속도, 간격 그리고 파종시스템의 경사가 결주율에 미치는 영향을 분석하였다. 시뮬레이션 분석 결과, 버킷의 회전속도와 간격은 결주율에 큰 영향을 미치지 않는 것으로 확인되었으나, 파종시스템의 경사는 결주율에 직접적인 영향을 미치는 것으로 확인되었다. 따라서, 파종기를 이용하여 마늘의 파종 작업을 수행할 경우, 파종기의 기울기 또는 토지의 경사 등을 고려해야 하며, 파종기 설계 시 경사조절장치 등의 도입을 통해 결주율 감소 및 생산성 향상에 효과적으로 대응할 수 있음을 확인하였다.
본 연구는 Abaqus/Explicit을 이용한 GFRP 볼트의 체결 거동을 해석적으로 평가하고, 마찰계수(0.15, 0.175, 0.20)와 제 조공법(Pultrusion, Filament Winding)이 손상 개시에 미치는 영향을 분석하였다. 손상 개시는 Hashin 파손 지수 중 하나라도 1 이상이 되는 시점으로 정의하였다. Pultrusion 볼트는 모든 조건에서 수지의 인장으로 손상이 개시되었고, 마찰계수가 증가할수록 개시 시간은 감소하였다(0.8369초, 0.6564초, 0.4998초). Filament Winding 볼트는 손상 개시 시간이 마찰계수에 상대적으로 둔감 (0.5143–0.6026초)한 반면, 인장 관련 지수는 마찰계수 증가에 따라 상승하여 0.175에서 최대를 보였다. 마찰계수 0.15에서는 두 공법 모두 수지의 인장으로 손상이 개시되며 Filament Winding이 Pultrusion보다 더 이르게 개시하였다. 0.175에서는 Filament Winding의 손상이 다소 빠르게 개시하였으나 섬유-인장 지수가 1에 도달하였을 때, 수지-인장, 수지-압축에 대한 지수가 1에 근접하 는 양상이 나타났다. 0.20에서는 두 공법 모두 수지의 인장으로 손상이 개시되며 Pultrusion이 소폭 더 빨랐다. 응력–시간 그래프에서 Pultrusion은 횡방향 인장 상승과 면내 전단의 결합에 좌우되고, Filament Winding은 전단 지배 거동이며 마찰계수에 따라 손상 거동이 전환될 수 있음을 보여준다. 이러한 결과는 마찰 관리와 나사산의 구조가 GFRP 체결부 신뢰성의 핵심 설계 변수임을 시사하며, 예정된 실 규모 체결력 실험으로 시뮬레이션을 검증⋅보정할 계획이다.
과학기술의 발전과 함께 국제해사기구(IMO)는 자율운항선박의 기술 기준 개발을 진행하고 있다. 이 논의의 핵심 주체는 육상에서 선박 운항에 직접 개입 하는 원격운항자와 원격운항센터이다. 원격운항자의 등장은 선박의 기국과 원 격운항자의 소재지인 영토국이 일치하지 않는 법적 현실을 유발하며, 결국 유 엔해양법협약에 따른 전통적인 기국 중심의 관할권 체제의 실효성과 한계에 대 한 근본적인 법적 의문을 제기하고 있다. 본 논문은 이러한 MASS 코드 초안의 논의 동향을 배경으로 원격운항자와 관련된 주요 국제법적 쟁점을 분석하고, 현행 국제협약의 흠결을 진단하여 국제법적 발전을 위한 구체적인 방안을 제시 하는 것이 목적이다. 연구 결과, 첫째, 원격운항자는 기존 선원의 직무를 기능적으로 대체하는 중요도를 고려할 때, 유엔해양법협약의 유연한 해석을 통해 광의의 선원으로 인정되는 것이 타당하다. 그러나 MASS 코드 초안은 원격운항자의 인원배치 에 대해 선박소유자에게 과도한 재량권을 부여하여 기국이 정하는 최소 안전 인원배치 원칙과 충돌하는 문제가 발생한다. 또한, 원격운항자에 대한 교육훈 련 및 자격증명 제도가 STCW협약과 연계된 국제적인 표준화 단계에 도달하 지 못하고 있어 인적 규제가 미흡하다. 둘째, 선내 안전 및 인사노무의 책임 자로서 선장의 지위를 규정하는 해사노동협약을 고려했을 때, 선장이 승선하 는 MASS에 대해서는 선장의 승선 의무를 유지해야 한다. 셋째, 원격운항센터 가 기국 영역 밖에 위치할 경우, 유엔해양법협약 제94조에 따른 기국의 실효 적인 관할권 행사에 중대한 한계가 발생한다. 그 결과, MASS와 관련된 해양 사고조사와 해양범죄 수사 시 관련 국가 간 관할권 경합이나 공백으로 이어 질 가능성도 존재한다. 결론적으로, MASS 운항 시대의 해양 안전 및 안보 유지를 위해서는 원격운 항자의 선원 지위를 명확히 확립하고, 이들의 교육훈련 및 자격증명 제도를 STCW협약과 연계하여 향후 발전시켜 할 필요성이 있다. 나아가 기국의 역외 관할권 행사의 실효성을 확보하기 위해 국가 간 양자 또는 다자 협정 체결을 통한 국제공조 및 역외관할권 집행 체제 구축도 요구된다.
This study presents the results of compression, drop impact, and vibration durability analyses conducted to evaluate the mechanical reliability of Battery Pack Cases (BPCs) in electric vehicle (EV) systems. BPCs are essential structural components that must endure compressive loads, impact forces, and vibrational fatigue. Finite Element Analysis (FEA) was applied to a representative BPC model to assess deformation, impact resistance, and vibration endurance. The results indicate that the BPC maintained integrity within yield strength limits under compressive loading and effectively absorbed energy under drop impact. Furthermore, Power Spectral Density (PSD) analysis identified stress concentration regions, providing insights for structural optimization. Overall, the findings support the development of lightweight and reliable BPC designs for advanced EV applications.
This study investigates the vibration characteristics of an aluminum subframe for small and high-speed vessels through modal and resonance analysis using the finite element method (FEM). Due to the low stiffness and damping of aluminum, concerns arise over structural resonance and fatigue. A 3D model based on actual design drawings was analyzed to extract six natural frequencies and corresponding mode shapes. Significant deformation was observed in the first and second modes (90.65 Hz, 110.60 Hz), which may overlap with operational frequencies. The fifth mode (263.70 Hz) showed high amplitude with Y-axis concentration, indicating lateral resonance vulnerability. Deformation ratios were used to identify dominant vibrational directions. Based on the findings, design strategies such as structural reinforcement, RPM adjustment, and damping device application were proposed to improve vibration safety in the early design stage.
In this study, structural analysis was performed to select the optimal design shape through failure identification and design changes in turbine housing. Damage in the inlet flange is considered to be high cycle fatigue due to the vibration excitation in the engine full load test. Therefore, the FE analyses were performed natural vibration analysis and frequency response analysis for the initial shape and design change models. The stress magnitudes were obtained as a function of frequency through frequency response analysis according to engine vibration excitation. As a result, the dynamic stiffness of Case (1) increased by approximately 3.6% compared to the initial model, and Case (2) increased by 4.6%. In addition, the stress magnitude was greatly reduced in the design improvement. Therefore, the model with only the flange thickness increased is thought to be optimal design for securing the durability of the turbine housing.
In apartment buildings in Korea, irregular walls, such as T-, L-, and U-shaped walls, are commonly used. However, in practical design, the geometric irregularities of walls are often neglected when determining the length of the lateral confinement region. Further, although earthquake loads apply from various directions, the lateral confinement region is typically determined for the in-plane direction of the web. Thus, using finite element analysis, this study investigated the structural performance of irregular walls subjected to various loading directions. As the design parameters, wall shape, cross-sectional aspect ratio, and loading direction were addressed. According to the parametric analysis results, as the length of flange in tension increased, the lateral confinement region should be evaluated with consideration of the geometric irregularity. Further, for the L- and U-shaped walls, it is recommended to evaluate the lateral confinement region for various loading directions. Based on these results, a design method to determine the lateral confinement region of irregular walls was suggested.
The purpose of this study is to evaluate by experiments and 3-D finite element predictions of strain-hardening cementitious composite(SHCC) structural walls. The specimen of concrete wall used shear reinforcements to satisfy with design shear strength, while the specimen of a SHCC wall used minimum shear reinforcement. The finite element prediction is based on the total strain crack model, and appropriate tensile models were applied according to the material characteristics of concrete and SHCC. The accuracy of the finite element prediction was verified by comparison with experimental results, and the SHCC wall showed superior structural performances in overall load-carrying capacity as well as in reductions of damages caused by crack localizations, even with minimum use of shear reinforcements.
This study proposes an improved method for updating finite element models (FEM) by incorporating the random field characteristics of concrete material properties in reinforced concrete structures. Traditional FEM often assumes homogeneous material properties, which can lead to significant discrepancies between predicted and actual dynamic responses, especially in structures where the Young’s modulus (E) of concrete varies due to factors like curing conditions, material composition, and construction methods. We employed a Gaussian random field model and a system identification (SI) technique to address this limitation to optimize sensor placement. We developed an FEM updating method that incorporates the spatial variability of concrete elasticity. This optimization allowed for a more accurate capture of dynamic properties across various structural locations, resulting in FEM updates that reflect concrete’s inherent heterogeneity. The proposed method was validated through numerical examples, comparing dynamic response accuracy in models before and after updating. Results demonstrated that error values, measured in terms of maximum value error and normalized root mean squared Error (NRMSE), were significantly reduced in the updated models compared to the pre-update model. This approach effectively addresses the limitations of homogeneous assumptions in FEM.
Our study develops a finite element analysis (FEA) model to evaluate the seismic performance of a two-story reinforced concrete (RC) school building and validates it through experiments. We developed a methodology that reflects failure modes from past experiments and validated it by comparing results at both the member (columns) and system (beam-column joints) levels. We created an FEA model for seismic-vulnerable RC moment frames using this methodology. This model incorporates bond-slip effects using three methods: Merged Nodes, Constrained Beam in Solid Penalty (CBISP), and Constrained Beam in Solid Friction (CBISF), which model the interaction between reinforcement and concrete. The approach provides a reliable tool for evaluating seismic performance and improves the accuracy of reinforced concrete frame evaluations.
본 연구에서는 지반-구조물 상호작용(SSI, Soil-Structure Interaction) 해석에서 계산 효율성과 해석 정확성을 동시에 확보하기 위해 철근 콘크리트 기둥의 단순 모델링 기법과 PML(Perfectly Matched Layer) 요소를 결합한 방법을 제안하였다. 단순 모델링 기법은 상 세모델과 비교하였을 때 강성 및 고유진동수 차이가 1% 이내로 나타나 구조물의 정적 및 동적 거동을 효과적으로 모사할 수 있음을 확인하였다. PML 요소를 적용한 SSI 해석은 반무한지반 모델 대비 계산 영역을 1/5로 줄이고, 해석 시간을 7% 수준으로 단축하면서 도 기둥의 고유진동수가 동일하게 나타났다. 이를 통해 PML 요소가 계산 비용을 대폭 줄이면서도 해석 결과의 정확성을 유지할 수 있음을 확인하였다.
이 연구는 다목적 선박(MPV)의 공기역학적 구조물 설계, 분석 및 향상을 통해 그린 워터 압력에 의한 구조적 안전을 보장하고, 탈탄소화 및 에너지 효율성에 이바지하는 방법을 기술하였다. 유한 요소 분석(FEA)을 통한 초기 평가에서 좌굴 발생에 대한 잠재적인 취약점 이 있음을 확인하였다. 이러한 문제를 해결하기 위해 보강재(Carling stiffener)와 두께 증가를 통하여 응력을 재분배하고 국부적인 좌굴 발생의 위험을 최소화하였다. 보강 후 분석 결과, 한국선급(KR)의 안전 기준인 항복 강도, 미국 선급(ABS) 좌굴 강도 및 노르웨이 표준(NORSOK) 변 위 기준을 모두 충족하는 것이 확인되었다. 결과적으로 고유치 좌굴 해석 결과가 안전 기준을 초과하고 최대 변위가 허용 한계 내에 있는 등 중요한 개선이 이루어졌다. 이러한 개선은 극한의 해양 조건에서 운영 신뢰성을 보장할 수 있다. 이 연구는 공기역학적 항력 감소와 구조적 안전성의 이중적인 이점을 강조하며, 국제 해사 기구(IMO)의 2050 탈탄소화 목표에 부합하는 연료 효율성 및 온실가스 배출 감소에 이바지할 수 있다. 연구 결과는 다양한 선박 유형에 걸쳐 항력 감소 기술을 확장하기 위한 기초 자료를 제공하며, 지속 가능하고 탄력적인 해양 운영을 위한 대안을 제시하였다. 향후 연구는 구조적 안전 평가를 가속할 수 있는 단순화된 모델링 기술 개발에 집중할 것이다.
본 연구에서는 반복 하중에 의한 철근 및 GFRP로 보강된 교각 기둥부의 비선형 거동을 수치해석적으로 모사하기 위하여 Parabolic 함수와 Weibull 함수가 적용된 콘크리트 손상 소성모델 및 운동학적 경화모델을 적용하였다. 3차원 유한요소 모델링을 구현하였으며, 고속도로용 교각 기둥부의 실제 설계 제원을 기반으로 GFRP 보강근의 축방향 배근 개수를 변화하였을 때 하중-변위 곡선 및 포락선을 도출하여 각 변수해석 결과를 비교 분석하였다. 본 연구의 수치해석 결과로부터, 교각 기둥부와 같은 압축부재에 기존의 국외기준에서 GFRP 보강근의 압축성능이 무시된 것은 보수적이고 과다한 설계로 판단되며, 본 연구결과는 GFRP 보강근의 압축부 설계에 대한 가이드라인이 될 수 있을 것으로 기대된다.
This study explores the application of Blade Element Theory (BET) to predict the aerodynamic performance of three-dimensional propellers, addressing the computational challenges associated with traditional methods like moving mesh and Multiple Reference Frame (MRF). By utilizing two-dimensional flow analysis to compute lift and drag coefficients, this approach enables rapid and efficient aerodynamic performance predictions with significant reductions in computational time. Comparative analysis with three-dimensional simulations reveals BET's accuracy, with thrust predictions showing slight overestimation at higher RPMs. Findings highlight BET's potential for preliminary propeller design, particularly for low-solidity, low-speed applications. This method provides an efficient alternative for optimizing propeller performance in electric vertical takeoff and landing (eVTOL) systems, pivotal for advancing Urban Air Mobility (UAM) solutions.