곧 다가올 미래에는 자율운항선박, 육상 원격제어센터에서 제어되는 선박, 그리고 항해사가 탑승하여 운항하는 선박이 함 께 공존하며 해상을 운항할 것이며, 이러한 상황이 도래했을 때 해상 교통 환경의 안전을 평가할 수 있는 방법이 필요할 것으로 사료 된다. 이에 본 연구에서는 자율운항기술을 사용하여 항해사가 직접 조종하는 선박과 자율운항선박이 공존하는 해상환경 하에서 선박 조종시뮬레이션을 통해 통항 안전성을 평가하기 위한 방안을 제시하였다. 자선은 6-자유도 운동 기반의 MMG 모델을 심층 강화학습 기법 중 하나인 PPO 알고리즘으로 학습하여 자율운항 기능을 갖출 수 있도록 설계하였다. 타선은 평가 대상 해역의 해상 교통 모델 링 자료로부터 선박이 생성되도록 하였고, 기 학습된 선박모델을 기반으로 자율운항 기능을 구현되도록 하였다. 그리고 해양기상 자 료 데이터베이스로부터 조위, 파랑, 조류, 바람에 대한 자료를 수집하여 수치 모델을 수립하고 이를 기반으로 해양기상 모델을 생성하 여 시뮬레이터 상에서 해양 기상이 재현되도록 설계하였다. 마지막으로 안전성 평가는 기존의 평가 방법을 그대로 유지하되, 선박조 종시뮬레이션에서 해상교통류 시뮬레이션을 통한 충돌 위험성 평가가 가능하도록 하는 시스템을 제안하였다.
This study is concerned with the optimization of the manufacturing process of a hot water extract containing antioxidant activity from Lycium barbarum, traditionally known to have various physiological activities. For the establishment of the optimization process, the central composite design of response surface methodology(RSM) was used. Thirteen extraction processes were performed by encoding the independent variables, extraction temperature (65.9oC–94.1oC) and extraction time (2.59 hr–5.41 hr). As a result of the experiment, the optimal manufacturing conditions for the extract were 340.0 mg/100 g of GAE at an extraction temperature of 94.1oC and an extraction time of 5 hr. The maximum yield of flavonoids was 22.44 mg/100 g of HES at an extraction temperature of 94.1oC and an extraction time of 4 hr. The conditions for producing the extract with the maximum antioxidant capacity (DPPH 92.12%) were 90oC and 4.5 hr extraction time. Therefore, the optimal manufacturing process conditions for extracts containing total phenol content, flavonoid content, and DPPH radical scavenging activity, which are dependent variables, were extraction temperature of 90-95oC and extraction time of 4 hr, which were not significantly different from the actual values. Therefore, Lycium barbarum extract rich in total phenol and flavonoid content related to antioxidant function is expected to be used as a functional food and cosmetic material.
The demand for transportation is increasing due to the continuous generation of radioactive wastes. Especially, considering the geographical characteristics of Korea and the location characteristics of nuclear facilities, the demand for maritime transportation is expected to increase. If a sinking accident happens during maritime transportation, radioactive materials can be released into the ocean from radioactive waste transportation containers. Radioactive materials can spread through the ocean currents and have radiological effects on humans. The effect on humans is proportional to the concentration of radioactive materials in the ocean compartment. In order to calculate the concentration of radioactive materials that constantly flow along the ocean current, it is necessary to divide the wide ocean into appropriate compartments and express the transfer processes of radioactive materials between the compartments. Accordingly, this study analyzed various ocean transfer evaluation methodologies of overseas maritime transportation risk codes. MARINRAD, POSEIDON, and LAMER codes were selected to analyze the maritime transfer evaluation methodology. MARINRAD divided the ocean into two types of compartments that water and sediment compartments. And it was assumed that radionuclides are transfered from water to water or from water to sediment. Advection, diffusion, and sedimentation were established as transfer process for radionuclides between compartments. MARINRAD use transfer parameters to evaluate transer processes by advection, diffusion, and sedimentation. Transfer parameters were affected by flow rate, sedimentation rate, sediment porosity, and etc. POSEIDON also divided the ocean into two types that water and sediment compartment, each compartments was detaily divided into three vertical sub-compartment. Advection, diffusion, resuspension, sedimentation, and bioturbation were established as transport processes for radionuclides between compartments. POSEIDON also used transfer parameters for evaluating advection, diffusion, resuspension, sedimentation, and bioturbation. Transfer parameters were affected by suspended sediment rates, sedimentation rates, vertical diffusion coefficients, bioturbation factors, porosity, and etc. LAMER only considered the water compartment. It divided the water compartment into vertical detailed compartments. Diffusion, advection and sedimentation were established as the nuclide transfer processes between the compartments. To evaluated the transfer processes of nuclides for diffusion and advection, LAMER calculated the probability with generating random position vectors for radionuclides’ locations rather than deterministic methods such as MARINRAD’s transfer parameters or POSEIDON’s transfer rates to evaluate transfer processes. The results of this study can be used as a basis for developing radioactive materials’ ocean transfer evaluation model.
The Spent Nuclear Fuel (SNF) cladding serves as the first barrier that prevents the release of radioactive materials. It is very important to maintain cladding integrity in SNF management. It is known that the pinch load applied to the cladding can lead to Mode-3 failure and the cladding becomes more vulnerable to this failure mode with the existence of radial hydrides and other forms of mechanical defects. In this study, a numerical analysis process was proposed to scientifically and systematically evaluate the fracture resistance of cladding with reoriented hydrides under pinch load. The mechanical behavior and fracture of the irradiated cladding under pinch load can be evaluated by Ring Compression Test (RCT). Under the stress field generated by RCT, the cracks propagate more easily through radial hydrides than circumferential hydrides. The δ-hydride which form within the α-zirconium matrix causes a large expansion strain due to the volume difference and voids form at the interface between the hydride and the zirconium matrix. Chan demonstrated that the load needed to form voids and separate the hard hydride precipitates from the Zr matrix is considerably lower than that which initiates brittle fracture of hydrides using a micro-cantilever test. Therefore, we propose a microstructure crack propagation analysis method based on Continuum Damage Mechanics (CDM) that can simulate fracture of hydride, zirconium matrix, and Zr/hydride interface. CDM is possible to simulate the hydride, zirconium matrix, and interface cracking in a continuum model based on cladding deformation. The RCT simulation model was constructed from the microscopic images of irradiated cladding. A pixel-based finite element model was created by separating the hydride, zirconium matrix, and interface using the image segmentation method on a morphology operation basis. The appropriate element size was selected for the efficiency of the analysis and crack propagation using CDM. The force-displacement curves and strain energy from RCT were compared and analyzed with the simulation results of different element sizes. The finalized RCT simulation model can be used to evaluate the fracture resistance of the irradiated cladding under the quantified pinch load and to establish the failure criterion of fuel rods under pinch load. The advantages and limitations of the proposed process are discussed.
강진에 대한 다양한 비선형 거동을 하는 부재요소들로 이루어진 교량시스템의 현재까지의 일반적인 지진취약도 평가방법은 부재- 수준에서 평가하는 것이다. 본 연구의 목적 부재-수준의 지진취약도 평가결과로부터 구조시스템을 대표하는 시스템-수준의 지진취 약도 평가방법을 개발하는 것이다. 교량의 지진 거동을 일반적으로 교축방향과 교축직각방향으로 구분하기 때문에 본 연구에서도 시 스템-수준 지진취약도를 두 방향에 대하여 구분해 평가하였다. 길이 방향에 대한 부재-수준의 지진취약도평가는 교각, 교량받침, 충 돌, 교대, 낙교에 대하여 수행하였다. 교축직각 방향에 대해서는 충돌, 교대, 낙교의 손상이 영향을 주지 않으므로 부재-수준의 지진취 약도평가는 교각과 교량받침에 대하여만 수행하였다. 다양한 구조부재의 비선형모델을 이용한 지진해석은 OpenSEES 프로그램을 사용하여 수행하였다. 시스템-수준의 지진취약도는 부재-수준 사이의 손상이 직렬연결이라고 가정하고 평가하였다. 교각의 손상이 다른 부재-수준의 손상보다 시스템-수준의 지진취약도에 지배적인 영향을 주는 것을 알 수 있었다. 다시 말하면 가장 취약한 부재-수 준의 지진취약도가 시스템-수준의 지진취약도에 가장 지배적인 영향을 주는 것을 의미한다.
As nuclear power plants are operated in Korea, low and intermediate-level radioactive wastes and spent nuclear fuels are continuously generated. Due to the increase in the amount of radioactive waste generated, the demand for transportation of radioactive wastes in Korea is increasing. This can have radiological effect for public and worker, risk assessment for radioactive waste transportation should be preceded. Especially, if the radionuclides release in the ocean because of ship sinking accident, it can cause internal exposure by ingestion of aquatic foods. Thus, it is necessary to analyze process of internal exposure due to ingestion. The object of this study is to analyze internal exposure by ingestion of aquatic foods. In this study, we analyzed the process and the evaluation methodology of internal exposure caused by aquatic foods ingestion in MARINRAD, a risk assessment code for marine transport sinking accidents developed by the Sandia National Laboratory (SNL). To calculate the ingestion internal exposure dose, the ingestion concentrations of radionuclides caused by the food chain are calculated first. For this purpose, MARINRAD divide the food chain into three stages; prey, primary predator, and secondary predator. Marine species in each food chain are not specific but general to accommodate a wide variety of global consumer groups. The ingestion concentrations of radionuclides are expressed as an ingestion concentration factors. In the case of prey, the ingestion concentration factors apply the value derived from biological experiments. The predator's ingestion concentration factors are calculated by considering factors such as fraction of nuclide absorbed in gut, ingestion rate, etc. When calculating the ingestion internal exposure dose, the previously calculated ingestion concentration factor, consumption of aquatic food, and dose conversion factor for ingestion are considered. MARINRAD assume that humans consume all marine species presented in the food chain. Marine species consumption is assumed approximate and conservative values for generality. In the internal exposure evaluation by aquatic foods ingestion in this study, the ingestion concetration factor considering the food chain, the fraction of nuclide absorbed in predator’s gut, ingestion rate of predator, etc. were considered as influencing factors. In order to evaluate the risk of maritime transportation reflecting domestic characteristics, factors such as domestic food chains and ingestion rate should be considered. The result of this study can be used as basis for risk assessment for maritime transportation in Korea.
Since the time to consider when evaluating leakage of spent fuel dry storage systems is very long, assumptions that continue to leak at the initial leakage rate are too conservative. Therefore, this study developed a dynamic methodology to calculate the change in leakage rate using time-varying variables and apply it to calculate the amount of radioactive leakage during the evaluation period. The developed dynamic methodology was then applied to calculate the leakage radiation source term for a hypothetical dry storage system and used to perform a public dose assessment. When applying the developed dynamic leakage rate evaluation methodology for more accurate confinement evaluation in case of containment damage of dry storage system, it was found that the change of leak rate with time is very insignificant if the hole diameter is small enough, and the leak rate decreases rapidly with time when a hole with a certain diameter or larger occurs. In the case of the accident condition, except when the hole is very large, it corresponds to the chocked flow condition, and the leak rate decreases rapidly as soon as the internal pressure is sufficiently lowered to enter the molecular and continuum flow region. In the case of a small hole diameter, the leakage volume is very small, so even if the dynamic methodology is applied, the evaluation results are not different from the case where the initial leakage rate continues, and when the hole diameter exceeds a certain value, the internal pressure drops according to the leakage volume, and the leakage rate decreases significantly. As a result of evaluating the dose to residents by applying the calculated radiation source term, it was confirmed that the dose criteria was exceeded when a hole with a diameter of about 4 μm occurred under off-normal conditions, and the dose standard was exceeded under accident conditions when a chocked flow occurred between the diameter of the hole and 2-3 μm, resulting in a rapid increase in the dose. The results of this study are expected to contribute to a more accurate evaluation of the confinement performance of storage systems, which will contribute to the design of optimal dry storage systems.
Radioactive source terms are important factor in design, licensing and operation of SMR (Small Modular Reactor). In this study, regulatory requirements and evaluation methodology for normal operation on NuScale SMR, which received standard design certification approval on September 11, 2020 from US NRC, are reviewed. The radioactive waste management system of nuclear power reactor should be designed to limit radionuclide concentration in effluents and keep radioactive effluents at restricted area boundary ALARA according to 10 CFR 20 and 10 CFR 50 Appendix I. Also, in general, the coolant source term to calculate the off-site radiological consequences for normal operation of SMR should be determined by using models and parameters that are consistent with regulatory guide 1.112, NUREG- 0017 and the guidance provided in ANSI/ANS-18.1-1999, and the result should be corrected by reflecting the design characteristics of SMR. The coolant source term of NuScale, unlike the case of large NPPs, cannot rely solely on empirical source term data, because the NuScale source term is based on first principle physics, operational experience from recent industry, and lessons learned from large PWR operation. Fission products in reactor coolant are conservatively calculated using first principle physics in SCALE Code assuming 60 GWD/MTU. The release of fission products from fuel to primary coolant based on industry operational experience is determined as fuel failure fraction of 0.0066% for normal operation source term and 0.066% for design basis source term while coolant source term of large NPP is calculated by using ANSI/ANS-18.1 for normal operation and fuel failure fraction of 1% for design basis source term. Water activation products in reactor coolant are calculated from first principles physics and corrosion activation products are calculated by utilizing current large PWR operating data (ANSI/ANS 18.1- 1999) and adjusted to NuScale plant parameters. Also, because ANSI/ANS 18.1-1999 is not based on first principle physics models for CRUD generation, buildup, transport, plate-out, or solubility, NuScale has incorporated lessons learned by using ERPI’s primary water chemistry and steam generator guidelines to ensure source term is conservative and design of materials used cobalt reduction philosophy to help ensure the coolant source term are conservative. Based on the coolant source term calculated according to the above-described method, the annual releases of radioactive materials in gaseous and liquid effluents from NuScale reactor are evaluated. Currently, Small Modular Reactors such as ARA, SMART 100 are under review for licensing in Korea. This study will be helpful to understand how the reactor coolant system source terms are defined and evaluated for SMR.
PURPOSES : The purpose of this study was to develop the evaluation methodologies for spraying amount and sprayed condition of curing compound based on IoT technology when concrete pavements are constructed. METHODS : To measure the spraying amount of curing compound, a turbine type flowmeter was selected and a number of laboratory experiments were performed to verify the applicability of the selected sensor. To evaluate the uniformity of the sprayed curing compound on the concrete pavement surface, image process technologies were examined using pictures taken from the actual construction sites and from the test specimens. RESULTS : By performing experiments using water and curing compound, the selected flowmeter was verified to properly be applied to measure the spraying amount of curing compound with an acceptable accuracy. By conducting image processing using pictures of the sprayed curing compound on the concrete pavement surface, it was found that the 8 color analysis method was the best to evaluate the uniformity of the sprayed curing compound. CONCLUSIONS : From this study, it was concluded that the spraying amount of curing compound could be accurately measured using a turbine type flowmeter and the uniformity of the sprayed curing compound on the concrete pavement surface could be properly evaluated using an image processing technology.
본 연구는 도심지 경관용으로 식재되는 초화류의 일조부족에 따른 관상성의 차이를 평가하기 위하여 수행하였다. 생장 특성에 따라 수직형, 부채꼴형, 반구형 식물 6종을 대상으로 7개월간의 차광처리 후 생장 특성을 조사하였다. 이 후 각 생장 유형에 따라 형태, 밀도, 색상 등의 관상 특성을 표현할 수 있는 산출식을 도출하였다. 차광처리 전, 후 식물 생육을 측정 한 후 산출식에 따라 관상가치를 평가한 결과 가우라는 자생 지 환경에서의 관상가치를 5점으로 하였을 때 50% 차광에서 0.66점 낮았고, 돌단풍은 80%에서 0.99점 부족한 관상성을 나타냈다. 다양한 환경조건에서 식물들의 생장 패턴을 유형화하는 등의 지속적인 경관식물의 가치 정량화에 대한 후속연구를 통해 도심지 녹지의 질을 높이는데 다양한 식물이 활용될 수 있게 함으로써 관상식물의 부가가치 향상을 기대할 수 있을 것이라 사료된다.