The effects of exogenous sodium nitroprusside (SNP, nitric oxide donor) on the growth, yield, photosynthetic characteristics, and antioxidant enzyme activity of kimchi cabbage (Brassica rapa L. subsp. pekinensis (Lour.) Hanelt) was studied under the low temperature conditions. Kimchi cabbages were treated with SNP of three concentrations (7.5, 15, 30 mg·L-1) for three times at four-day intervals and exposed to low temperature (16/7°C) stress for seven days. SNP treatment induced increases of net photosynthetic rate (Pn), stomatal conductance (Gs), intracellular CO2 concentration (Ci) and transpiration rate (Tr) under the stress condition with the highest level after the third treatment. The contents of malondialdehyde (MDA) and H2O2 were significantly lower in the treatment of SNP compared to the non-treated control. The activity of ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD), increased in treated plants by up to 38, 187, 24 and 175%, respectively compared to the non-treated control. SNP-treated and untreated plants had similar growth characteristics. Compared to the control group, SNP-treatment increased fresh weight and leaf area by 5%. Overall, our findings suggest that the application of sodium nitroprusside to the leaves contributes to reducing physiological damage and enhancing the activities of antioxidant enzymes, thereby improving low temperature stress tolerance in kimchi cabbage.
Sulfur is an essential element in plants, including amino acids, vitamin synthesis, and acting as an antioxidant. However, the interaction between endogenous sulfur and proline synthesis has not been yet fully documented. White clover (Trifolium repens L.) is known as a species highly sensitive to sulfate supply. Therefore, this study aimed to elucidate the role of sulfur in regulating proline metabolism in relation to ammonia detoxification and hydrogen peroxide (H2O2) accumulation in white clover. The detached leaves of white clover were immersed in solution containing different concentration of sulfate (0, 10, 100, and 1000 mM MgSO4). As MgSO4 concentrations were increased, the concentration of H2O2 increased up to 2.5-fold compared to control, accompanied with H2O2 detection in leaves. Amino acid concentrations significantly increased only at higher levels (100 and 1000 mM MgSO4). No significant difference was observed in protein concentration. Proline and Δ1-pyrroline-5-carboxylate (P5C) concentrations slightly decreased at 10 and 100 mM MgSO4 treatments, whereas it rapidly increased over 1.9-fold at 1000 mM MgSO4 treatment. Ammonia concentrations gradually increased up to 8.6-fold. These results indicate that exogenous sulfur levels are closely related to H2O2 and ammonia synthesis but affect proline biosynthesis only at a higher level.
This study investigated the responses of Eremogone juncea flowering characteristics to exogenous 6-benzylaminopurine (BAP) and gibberellic acid3 (GA) treatments. Overwintered E. juncea plants were sprayed with seven treatments: no hormones; 200, 400, and 800 mg·L-1 BAP; and 200, 400, and 800 mg·L-1 GA. All treatments showed 100% flowering, and the exogenous BAP and GA treatments did not affect the time to flowering, whereas the hormone treatments influenced floral organ development. BAP significantly decreased the floret diameter and inflorescence length with increasing BAP concentration, although the 400 and 800 mg·L-1 BAP treatments showed similar values. BAP also caused abnormal flowers with a large gynoecium and stamens with small anthers and short filaments. However, GA significantly increased the floret diameter and inflorescence length, although 800 mg·L-1 GA treatment did not affect the floret diameter. In the vegetative parameters, the leaf length tended to increase as the GA concentration increased. These results indicate that BAP and GA affect the flowering quality of E. juncea and can enhance the value of cut flowers, such as flower size and inflorescence length, by making the flowers larger overall.
Gangliosides are glycolipids in which oligosaccharide is combined with sialic acids. Our previous studies have suggested an interplay between ganglioside GD1a/GT1b and meiotic maturation capacity in porcine oocyte maturation. Furthermore, ganglioside GD1a and GT1b are known for its antioxidant activity, but it is still unclear whether possible antioxidant role of GD1a and GT1b is involved in porcine embryos development competence during in vitro culture (IVC). Here, the effects of ganglioside GD1a and GT1b on the embryonic developmental competence during in vitro culture of porcine were investigated. The effects of ganglioside GD1a and GT1b on the expression of ST3GAL2 were confirmed during embryos development (2-cell, 4-cell, 8-cell and blastocyst) using immunofluorescent staining (IF). As a result, the fluorescent expression of ST3GAl2 was higher in embryos at 4-8 cells stage than blastocysts. Blastocyst development rate significantly increased in only 0.1 μM GD1a and GT1b treated groups compared with control group. To investigate the cellular apoptosis, we analyzed TUNEL assay. In case of only 0.1 μM GD1a and GT1b treated groups, the total number of cells in blastocyst compared with control group, but there was no significant difference in the rate of apoptotic cells. We identified the intracellular ROS levels using DCF-DA staining. According to the result, ROS production significantly decreased in blastocysts derived from the 0.1 μM GD1a and GT1b treated groups. These results suggest that ganglioside GD1a and GT1b improve the developmental competence of porcine embryos via reduction of intracellular ROS during preimplantation stage.
In this study, we consider the problem of forecasting the number of inbound foreigners visiting Korea. Forecasting tourism demand is an essential decision to plan related facilities and staffs, thus many studies have been carried out, mainly focusing on the number of inbound or outbound tourists. In order to forecast tourism demand, we use a seasonal ARIMA (SARIMA) model, as well as a SARIMAX model which additionally comprises an exogenous variable affecting the dependent variable, i.e., tourism demand. For constructing the forecasting model, we use a search procedure that can be used to determine the values of the orders of the SARIMA and SARIMAX. For the exogenous variable, we introduce factors that could cause the tourism demand reduction, such as the 9/11 attack, the SARS and MERS epidemic, and the deployment of THAAD. In this study, we propose a procedure, called Measuring Impact on Demand (MID), where the impact of each factor on tourism demand is measured and the value of the exogenous variable corresponding to the factor is determined based on the measurement. To show the performance of the proposed forecasting method, an empirical analysis was conducted where the monthly number of foreign visitors in 2019 were forecasted. It was shown that the proposed method can find more accurate forecasts than other benchmarks in terms of the mean absolute percentage error (MAPE).
The aim of this study was to investigate the effects of timing of collecting date and concentration of IBA and NAA, in order to enhance initial activity and seedling quality of domestic strawberry. Strawberry cuttings were separately taken twice, in June 7 and in July 5, and IBA and NAA were treated with the concentrations of 0.025, 0.05 and 0.1% at cutting date, respectively. The seedlings were evaluated for the percentage of survival during 18 days at 6 times after tunnel cultivation. The NAA treatment was inappropriate for strawberry cutting due to the high rate of seedling mortality, regardless of the collecting date. The vitality of the seedlings was highest at IBA 0.1% in June collecting and at IBA 0.05% in July collecting. The seedlings from June collecting had a higher quantum yield at IBA 0.1% and the seedlings from July collecting at IBA 0.05%. Therefore, IBA could be more effectively applied than NAA to promote the vitality and quality with the appropriate concentration of 0.1% at June collecting and 0.05% at July collecting, respectively.
Osteoarthritis occurs when the cartilage that gradually deteriorates as common aging-associated disease in humans and animals. There is no cure, but the treatments are available to manage to relieve pain through medication such as steroids. Growing interest has been focused on the role of cell-based therapies using mesenchymal stem cells (MSCs). In addition, mesenchymal stem cells can be isolated from almost adult tissues and known for their potential of becoming cartilage. Clinical and experimental studies indicate that the development of treatment using stem cells is double-edged sword involving a possibility such as tumorigenesis. This study focused on the electrical features during articular cartilage development and hypothesized that external electric fields promote pre-chondrogenic condensation without concern relating to genetic modification or exogenous factors. Here, it has been reported that exogenous direct electric fields drive pre-chondrogenic condensation which is the stage where cartilage formation begins by condensation of stem cells and cartilage cells in the microenvironment of the joint. Time-dependent observations also support the contribution of electrical stimulation (ES) to induce gradual aggregation of MSCs into highly compact structures within 3 days. Collectively, our findings provide the potential of electrical stimulation-driven chondrogenesis of mesenchymal stem cells in the absence of exogenous factors for repair of cartilage defects.
딸기는 세계적으로 중요하고 인기있는 과채류이며 ‘설향’은 국내 시장에서 재배되고 있는 주요 품종 중 하나이다. 딸기의 생장과 화아 유도는 이 작물의 과실에 수량에 직접적으로 영향을 미치는 과정이다. 본 연구에서는 벤질아데닌(BA), 지베렐린 산(GA3), 살리실 산(SA)이 ‘설향’ 딸기의 생장과 화아 유도에 미치는 영향 을 조사하였다. 21구 트레이에서 번식된 지 3주가 경과한 런너묘를 온도는 25oC/15oC(주간/야간), 상대습도는 70%, 광원은 백색 LED, 광도는 300 μmol·m-2·s-1 PPFD로 유지되는 생장 챔버에서 재배하였다. BA, GA3 및 SA를 각 0(대조구), 100, 200 mg·L-1로 런너묘에 처리하였다. 이러한 생장조절제를 런너묘의 잎에 2주 간격으로 2회 엽면살포하였다. 9주 후의 생육을 비교한 결과, 생장조절제를 엽면살포한 모든 처리에서 대조구에 비해 근장과 엽록소함량(SPAD)이 감소하는 경향을 보였다. GA3 처리에서 엽록소함량(SPAD)이 가장 낮았다. 하지만 GA3 200 mg·L-1 처리에서 엽면적, 잎 생체중, 식물 생체중이 증가하였다. 화아유도율과 화수는 SA 200 mg·L-1 처리에서 각 85%와 식물체당 4.3개로 가장 높았고 그 다음으로 SA 200 mg·L-1 처리에서 높았다. 전체적으로 GA3 처리에서 식물 생장을 향상시켰고, SA 처리에서는 개화를 촉진하였다. 더 나아가 GA3와 SA를 혼합한 처리를 추가한 연구를 수행하여 생장조절제간의 관계를 구명하고 그 결과에서의 분자 메커니즘과 관련된 반응을 조사하는 것이 필요하다고 판단된다.
Ganglioside GM3 is known as an inhibition factor of cell differentiation and proliferation via inhibition of epidermal growth factor receptor (EGFR) phosphorylation. Our previous study showed that the exogenous ganglioside GM3 reduced the meiotic maturation of porcine oocytes and induced apoptosis at 44 h of in vitro maturation (IVM). However, the role of ganglioside GM3 in the relationship between EGFR signaling and apoptosis during porcine oocyte maturation has not yet been studied. First, porcine cumulus-oocyte complexes (COCs) were cultured in the NCSU-23 medium with exogenous ganglioside GM3 according to maturation periods (non-treated, only IVM I: 0 - 22 h, only IVM II: 22 - 44 h and IVM I & II: 0 - 44 h). We confirmed that the proportion of germinal vesicle breakdown (GVBD) increased significantly in the IVM I treated group than in the control group. We also confirmed that the meiotic maturation until M II stage and polar body formation decreased significantly in the only IVM I treated group. Cumulus cell expansion and mRNA levels of the expansion-related factors (HAS2, TNFAIP6 and PTX3) decreased significantly in the IVM I treated group than in the control group. Protein levels of EGFR, p-EGFR, ERK1/2, and p-ERK1/2 decreased significantly in the GM3-treated groups, during the IVM I period. In addition, cellular apoptosis, determined using TUNEL assay, and protein levels of Cleaved caspase 3, were increased significantly in the GM3-treated COCs during the IVM I period. Based on these results, ganglioside GM3 exposure of porcine COCs during the IVM I period reduced meiotic maturation and cumulus cell expansion via inhibition of EGFR activity in pigs.
Nitric oxide (NO) has an important role in oocyte maturation and embryonic development in mammals. This study examined the effect of exogenous NO donor S-nitroso-N-acetylpenicillamine (SNAP) in a maturation medium on meiotic progression and embryonic development after parthenogenesis (PA) and somatic cell nuclear transfer (SCNT) in pigs. When oocytes were exposed to 0.1 μM SNAP for first 22 h of in vitro maturation (IVM) in Experiment 1, SNAP significantly improved blastocyst development in both defined and standard follicular fluid-supplemented media compared to untreated control (48.4 vs. 31.7-42.5%). SNAP treatment significantly arrested meiotic progression of oocytes at the germinal vesicle stage at 11 h of IVM (61.2 vs. 38.7%). However, there was no effect on meiotic progression at 22 h of IVM (Experiment 2). In Experiment 3, when oocytes were treated with SNAP at 0.001, 0.1 and 10 μM during the first 22 h of IVM to determine a suitable concentration, 0.1 μM SNAP (54.2%) exhibited a higher blastocyst formation than 0 and 10 μM SNAP (36.6 and 36.6%, respectively). Time-dependent effect of SNAP treatment was evaluated in Experiment 4. It was observed that SNAP treatment for the first 22 h of IVM significantly increased blastocyst formation compared to no treatment (57.1% vs. 46.2%). Antioxidant effect of SNAP was compared with that of cysteine. SNAP treatment significantly improved embryonic development to the blastocyst stage (49.1-51.5% vs. 34.4-37.5%) irrespective of the presence or absence of cysteine (Experiment 5). Moreover, SNAP significantly increased glutathione (GSH) content and inversely decreased the reactive oxygen species (ROS) level and mitochondrial oxidative activity in IVM oocytes. SNAP treatment during IVM showed a stimulating effect on in vitro development of SCNT embryos (Experiment 7). These results demonstrates that SNAP improves developmental competence of PA and SCNT embryos probably by maintaining the redox homeostasis through increasing GSH content and mitochondrial quality and decreasing ROS in IVM oocytes.
Ganglioside GT1b, glycosphigolipids with three sialic acid, is known to play an important role in signal transduction such as epidermal growth factor receptor (EGFR). EGF is also known to induce resumption of meiosis and cumulus cells expansion during porcine oocyte maturation. Therefore, this study was conducted to evaluate the effects of ganglioside GT1b on resumption of meiosis and cumulus cells expansion in porcine oocyte maturation. First, porcine cumulus-oocyte complexes were cultured in NCSU-23 medium supplemented with GT1b (0, 1, 2 and 4 μM) at 44 h. We observed that the proportion of the metaphase II (M II) stage was significantly increased in the 2 μM GT1b (78.0 ± 2.3) treated group than in the other groups. Furthermore, expression of cumulus cells expansion factor genes (Has2, TNFAIP6, Ptx3) were significantly increased in the 2 μM GT1b treated group than in the other groups. Next, we investigated the meiotic maturation and the expressions of cumulus cells expansion factor genes after GT1b and/or EGF treatment. The proportion of the M II stage was significantly higher in the GT1b+EGF (90.1 ± 2.3) treated group than in the other groups. Moreover, expressions of cumulus cells expansion factor genes were significantly increased in the GT1b+EGF treated group than in the control group. After in vitro fertilization, fertilization rate, preimplantation development competence and quality of blastocyst were improved in oocytes derived from GT1b+EGF treated group. Taken together, these results suggest that exogenous ganglioside GT1b improving the developmental competence of porcine embryos via increase of resumption of meiosis and cumulus cells expansion during in vitro maturation of porcine oocytes.
A study was conducted to evaluate the effects of auxin, cytokinin, and their combined application to hasten their propagation using leaf cuttings. Different hormone levels were evaluated on two Echeveria species (E. subsessilis and E. runyonii). Three levels of auxin as represented by the use of indole-3-butyric acid (IBA) (0, 100, and 500 ppm), three cytokinin levels as represented by Kinetin (Ki) (0, 100, and 200 ppm) and their combination were applied and observed for 8 weeks. The use of 100 ppm IBA resulted in the highest shoot height, diameter, and rooting and shooting rate. Using 500 ppm IBA led the roots to develop the earliest but both species also had the highest mortality. The application of 100 ppm Ki significantly affected the majority of leaf cuttings of E. runyonnii which exhibited the highest and thickest shoots, and the number of leaves. The application of 100 ppm IBA and 100 ppm Ki is recommended to obtain increased shoot growth and development for leaf cuttings. In the case of single hormone use, the application of 100 ppm IBA may be preferable. The combination of auxin and cytokinin significantly stimulated the hastening of production of succulents using leaf cuttings.
Browning is one of the key factors that influenced the callus subculture of tree peony (Paeonia suffruticosa Andr.). Effects of medium composition and exogenous hormones: macro elements of Murashige and Skoog (MS salts) and iron salt (Fe2+), pH, agar and 6-benzylaminopurine (6-BA), 1-naphthaleneacetic acid (NAA) and kinetin (KT) on the callus browning of P. suffruticosa ‘Shan Hu Tai’ in vitro were studied in this paper. Results showed that the browning of P. suffruticosa callus were more sensitive to KT than 6-BA in different concentrations of 6-BA and KT separately with different concentrations of NAA, and reduced to the lowest (13.3%) under 0.5 mg·L-1 NAA plus 0.3 mg·L-1 KT. 1/4 × MS plus 1/4 × Fe2+ was the best basic medium in which the browning rate was only 18.2%. The browning rate of the callus was the lowest of 4.0% under pH 6.5 and the callus grew better in 7.0 g·L-1 agar than others. This study indicated that the best medium preventing P. suffruticosa callus in vitro from browning was: 1/4 × MS medium supplemented with 6.95 mg·L-1Fe2+, 0.3 mg·L-1 KT, 0.5 mg·L-1 NAA, 6.0 g·L-1 agar and 30 g·L-1 sucrose in pH 6.5.
Kisspeptin (Kiss) and its cognate receptor, kisspeptin receptor (KissR; G protein coupled receptor 54, GPR54), have recently been recognized as potent regulators of reproduction in teleosts. Additionally, leptin plays an important role in energy homeostasis and reproductive function in teleosts. The purpose of this study was to examine differences in the concentration of the hormones of the Kiss/KissR system and leptin and the expression of their underlying genes, all of which are involved in the sexual maturation of female goldfish, Carassius auratus, following treatment with Kiss. The expression levels of KissR increased after the Kiss injection. Furthermore, the peptide hormone leptin also increased after the injection (in vivo and in vitro). Additionally, the expression of GnRH and GTHs (GTHα, FSHβ, and LHβ) increased in the brain and pituitary (in vitro and in vitro). These results support the hypothesis that Kiss plays important roles in the direct regulation of the hypothalamus-pituitary-gonad axis and leptin in goldfish. Therefore, we suggest that Kiss system gene expression is correlated with energy balance and reproduction.
Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are oocyte-specific growth factors that regulate many critical processes involved in early folliculogenesis and oocyte maturation. In this study, effects of GDF9 and BMP15 treatment during in vitro maturation of porcine oocytes upon development after parthenogenetic activation were investigated. Neither GDF, BMP15 alone nor in combination affects the number and viability of cumulus cells or the rates of oocyte maturation and blastocyst development. However, the treatment of GDF9 on porcine oocytes increased the number of trophectodermal (TE) cells of blastocysts derived from activated oocytes (P<0.05). The treatment of BMP15 increased the cell numbers of both inner cell mass (ICM) and TE cells (P<0.05). The treatment with the combination of GDF9 and BMP15 further increased the numbers of ICM and TE cells, compared with GDF9 or BMP15 treatment alone (P<0.05). In conclusion, the treatment of GDF9 or BMP15 (or both) enhanced the quality of blastocysts via the increased number of ICM and/or TE cells.
Cariogenic Streptococcus mutans encounters a variety of host defense factors produced in oral cavity. Nitric oxide (NO) and NO-mediated reactive nitrogen species are potential antimicrobials of innate immunity that can threaten the fitness of S. mutans in their ecological niches. Streptococcal strategies to detoxify cytotoxic NO, which allow S. mutans to persist in caries or other environments of the oral cavity, remain unknown. In this study, we directly measured NO consumption rates of S. mutans isolated in Korea. Surprisingly, all S. mutans strains were unable to consume exogenous NO efficiently, while an intracellular parasite Salmonella enterica serovar Typhimurium expressing the NO-metabolizing enzyme flavohemoglobin consumed most of the NO. This result suggested that S. mutans has alternative detoxification systems for tolerating NO-induced nitrosative stresses.
Understanding the behavior of transgenes introduced into oocyte or embryos is essential for evaluating the methodologies for transgenic animal production. To date, many studies have reported the production of transgenic pig embryos with, however, low efficiency in environment of blastocyst production. The aim of present study was to determine the expression and duration of transgene transferred by intracytoplasmic sperm injection-mediated gene transfer (ICSI-MGT). Embryos obtained from the ICSI-MGT procedure were analysed for the expression of GFP and then for the transmission of the transgene. Briefly, fresh spermatozoa were bound to exogenous DNA after treatment by Triton X-100 and Lipofectin. When ICSI-MGT was performed using sperm heads with tails removed, the yield of blastocyst (25.3%), treated with Lipofectin (18.8%) and Triton X-100 (19.2%) were observed. Treatments of Lipofectin or Triton X-100 did not further improve the rates of blastocysts. Moreover, the apoptosis rates of embryos were obtained from the control and LIpofectin groups (8.7%, 9.7%, respectively), but were significantly higher in the Triton X-100 group (13.0%). Our results demonstrated that ICSI-MGT caused minimal damage to oocytes that could develop to full term. Moreover, the embryos derived by ICSI-MGT have shown prolonged exogenous DNA expression during preimplantation stage in vivo. However, more efforts will be required to improve the procedures of both sperm treatments cause of high frequency of mosaicisms.
저온은 식물 생장을 저해하는 주된 요인이며 병원균에 대한 감수성을 증가시킨다. 그러므로 식물체에서 스트레스 내성을 증대시키는 것은 불리한 환경 조건에서 살아 남기 위한 중요한 전략이다. 본 실험의 목적은 고추 묘에서 저온 내성과 식물병 발생에 대한 외생 살리실산(SA)과 일산화질소(NO) 처리의 효과를 밝히는 것이다. 정식 후 23일 동안 고추 묘(Capsicum annuum L. ‘기대만발’)는 온도 20/25oC(낮/밤), 광주기 15시간, 광도 145±5μmol·m−2·s−1 의 정상적인 생육환경에서 자랐다. 1주일에 2번 계면활성 제 0.1%를 포함한 SA와 NO 3mL을 고추 묘에 각각 분사 해주었다. 처리 후 고추 묘는 암 상태에서 6시간 동안 4oC 저온에 노출시킨 후 정상적인 생육환경에서 2일 동안 회복시켜주었다. 저온 스트레스에 대한 식물 내성을 평가 하기 위해 저온 처리 후 생육특성, 엽록소 형광 값, 세포 막 투과성을 측정하였다. 총 페놀릭 농도와 항산화도는 실험하는 동안 측정하였다. 또한, 고추의 점무늬병과 풋마름 병 발생 정도도 조사하였다. 저온 처리 전·후를 비교하여 대조구 고추묘에서는 저온에 의해 상대적으로 많은 수분을 손실하여 건물율이 높지만 SA와 NO 처리 된 고추 묘는 비슷한 건물율을 유지하였다. 저온 처리 후 대조구에 비해 SA와 NO 처리구의 전해질 유출 값은 더 낮았다. 저온 처리 동안 SA와 NO 처리구의 엽록소 형광값은 약 0.8 수준으로 유지하였지만 대조구는 빠르게 감소하였다. 화학적 처리 동안 SA 처리구의 총 페놀릭 농도와 항산화도는 NO 처리구보다 높았다. 또한 저온 처리 후 대조구와 NO 처리구의 총 페놀릭 농도는 증가하였다. 고추에서 풋마름병에 대한 저항성은 SA가 보다 효과적이었다. 본 실험의 결과는 SA와 NO의 외생처리는 고추 묘의 저온 내성을 증대시켰고 병 발생 정도를 감소시키는 데 효과적이었음을 보여준다.
Curcuma alismatifolia ‘Chiangmai Pink’의 경우, 1단계 상태에서 수확한 절화의 수명은 3단계에서 수확한 절화보다 수명이 약 7.8일 길어졌다. ‘Chiangmai Dark Pink’의 경우, 절화 수명은 1, 2단계에서 수확하였을 경우 3단계 수확 시보다 수명이 8.3~11.3일 길어졌다. ‘ChiangmaiPink’ 절화의 노화증상은 화색이 약간 하얗게 탈색되어가면서 화포에 반점이 생기며 결국에는 화포가 완전히 시들면서 관상가치를 상실하였다. 1단계에서 수확한 절화는수명은 오랫동안 유지되지만 개화가 거의 진전되지 않아 완전한 개화를 볼 수 없었다. Curcuma alismatifolia‘Chiangmai Dark Pink’의 경우에는 포엽이 변색되면서목부분이 휘는 줄기굽음 현상을 보였다. 이러한 결과로보아 관상가치를 고려하면 1단계 보다는 2단계에서 수확하는 것이 가장 좋을 것으로 판단되었다. ‘Siam VioletLily’는 STS 전처리를 하지 않고 에틸렌에 노출된 절화는8.0일로 약 3일 가량 수명이 단축되었다. ‘Siam VioletLily’ 와 ‘Chiangmai Pink’는 외생 에틸렌 처리에 민감한품종으로 보인다. ‘Chiangmai Pink’는 수확 후 바로 물올림을 하였을 경우 절화수명이 33.8일, 2시간 방치 후 물올림을 한 것은 25.5일로 나타나 바로 물올림 한 것의24.6% 절화수명이 감소되었다. ‘Chiangmai Dark Pink’는 수확 후 바로 물올림 하였을 경우 절화수명이 31.5일,2시간 방치 후 물올림 한 것은 절화수명이 28.0일로 수확즉시 물올림을 한 것에 비해 수명이 11.2% 감소되었다.