With rapid urbanization, the importance of urban warfare is increasing, and it is also required to reflect the characteristics of cities in wargame models. However, in the military's wargame models, the urbanization factor was calculated and used without theoretical basis. In this study, we investigate techniques for estimating the urbanization factor using Fractal dimension theory. The urbanization factor we propose can suggest a logical and valid representative value when used in conjunction with Agent Based Model and other methodologies.
The integrity of the disposal repository structure must be guaranteed for few hundreds to few hundred thousand years until toxicity of radioactive waste is surely degraded. Acoustic emission (AE) method is widely utilized to evaluate the integrity of the structure because it can detect crack wave signals of the structures. It is well known that the cracking AE energy is proportional to the volume of the structure (Fractal theory). However, it is hard to destroy whole structures for obtaining AE energy. Therefore, the scaled specimens are prepared to obtain the relationship between volume of the structure and AE energy. The specimens are prepared with same of Wolsong Low and Intermediate Level Radioactive Waste Disposal Center (WLDC) silo concrete recipe. Their diameters are from 50 mm to 150 mm in each 10 mm and their heights are twice of the diameter. One set of 50 mm to 150 mm specimens (11 specimens in one set) are made in single mixers to maintain uniformity. Surface of the specimens are flatten with cement milk to prevent from applying load with eccentricity. The uniaxial compression test is performed by controlling displacement as 0.1 mm/min. The fractal constant is obtained using least square function from volume-cumulative AE energy relationship.
In view of the activated carbon pore-forming mechanism, the fractal hypothesis of pore interior growth was proposed by optimizing the structure of Sierpinski sponge. Based on the hypothesis and the definition of fractal dimension, the function relationship between the reaction degree, reaction step length, specific surface area and pore volume was deduced, and the pore fractal growth model of activated carbon activation process was established. Semi-coke, apple charcoal and lychee charcoal were used to prepare activated carbon. The pore size distributions of the activated carbons are in accordance with the fractal growth hypothesis. Further, the reaction degree and reaction step length can be determined by the experimental data of pore and surface structure, which verified the feasibility of the pore fractal growth model.
The purpose of this study is to develop a knitwear design with the potential for practical use through a combination of science and design by examining the concept and formative characteristics of fractal geometry and applying them to the development of 3D virtual clothing knitwear design. This study produced five main conclusions. First, the sub-concepts of “Repeatability,” “Scale variability,” and “complexity,” which are based on self-similarity, appear together with simple regularity in the fractal formative characteristics shown in fashion design. Second, fashion fields apply fractal geometry in three-dimensional surface textures and optical textile patterns as a method of expression. Third, it was confirmed that various expressions can be created with fractal patterns by using the SDS-ONE APEX 3-4 design system; moreover, fractal patterns are a suitable design source for the development of Jacquard knitwear patterns. Fourth, in the development of knitted jacquard fractal patterns, by arranging the patterns in perspective, the effect of emphasizing or reducing the human body by optical illusion was shown. Fifth, a knit Jacquard structure with a pattern that exhibits fractal modeling characteristics and applying it to a 3D virtual clothing sample design reduces the time required for sample production while expanding the knit design’s expression area and reducing costs. Thus, the clothing sample confirmed the effectiveness of practical knitwear design development.
We estimate the fractal dimension of the ρ Ophiuchus Molecular Cloud Complex, associated with star forming regions. We selected a cube (v, l, b) database, obtained with J = 1−0 transition lines of 12CO and 13CO at a resolution of 22′′ using a multibeam receiver system on the 14-m telescope of the Five College Radio Astronomy Observatory. Using a code developed within IRAF, we identified slice-clouds with two threshold temperatures to estimate the fractal dimension. With threshold temperatures of 2.25 K (3σ) and 3.75 K (5σ), the fractal dimension of the target cloud is estimated to be D = 1.52–1.54, where P / AD/2 , which is larger than previous results. We suggest that the sampling rate (spatial resolution) of observed data must be an important parameter when estimating the fractal dimension, and that narrower or wider dispersion around an arbitrary fit line and the intercepts at NP = 100 should be checked whether they relate to rms noise level or characteristic structure of the target cloud. This issue could be investigated by analysing several high resolution databases with different quality (low or moderate sensitivity).
본 연구에서는 객관적인 아름다움에 대한 주관적인 미적 경험으로서의 인지적, 감정적 경험에 관여하는 뇌 활성화 과정을 기능적 자기공명영상을 이용하여 검토해 보았다. 우선, 프랙탈 이미지에 대한 미적평가 행동과 제로 보편적인 아름다움의 준거를 확인하였다. 평정 결과에 기초하여, 전체 270개 이미지 중 가장 점수가 높은 50개를 아름다운 이미지로, 점수가 낮은 50개를 아름답지 않은 이미지로 선정하였다. 두 가지 조건을 블록으로 제시한 신경영상 연구 결과, 아름답다고 평가한 이미지에 대해서는 미적 경험에 관여하는 인지적, 정서적 처리에 관여된 부위인 전두엽과 대상회와 뇌섬엽이 활성화되었으며, 아름답지 않다고 평가한 이미지에 대해서는 부정적인 정서와 관련된 중후두회와 전설소엽의 활성화가 관찰되었다. 아름다움 평가에 대한 조건별 접속분석의 결과, 미적평가가 긍정적인 이미지에 대해서는 측두엽의 활성화가, 부정적인 이미지에 대해서는 두정엽의 활성화가 특징적으로 나타났다. 이에 대해 의미론적 해석과 추상화 과정과 연결하여 논의하였다.
The objective of the study is to analyze expressions of modern fashion in relation to design principle of a science theory, fractal geometry, in order to identify various and multi-layered expressions of fashion. As for methodology, the study interprets principle and characteristics of fractal geometry based on literature review in areas of linguistic, philosophy, sociology and science. The research identifies expressive characteristics of fractal through empirical studies, and applies them to fashion in order to analyze how fractal design principles are reflected in modern fashion in terms of form and significance. Fractal aesthetics pursue order, balance, diversity and openness among disorder and insecurity. They are closely related to the function of modern fashion that works as a multi-layered code, instead of being confined to conventional idea about fashion that “functions” as “wear.”
We have estimated the fractal dimension of the molecular clouds associated with the H ΙΙ region Sh 156 in the Outer Galaxy. We selected the 12CO cube data from the FCRAO CO Survey of the Outer Galaxy. Using a developed code within IRAF, we identified slice-clouds (2-dimensional clouds in velocity-channel maps) with two threshold temperatures to estimate the fractal dimension. With the threshold temperatures of 1.8 K, and 3 K, we identified 317 slice-clouds and 217 slice-clouds, respectively. There seems to be a turn-over location in fractional dimension slope around NP (area; number of pixel) = 40. The fractal dimensions was estimated to be D = 1.5 ∼ 1.53 for NP ≥ 40, where P ∝ AD/2 (P is perimeter and A is area), which is slightly larger than other results. The sampling rate (spatial resolution) of observed data must be an important parameter when estimating fractal dimension. Fractal dimension is apparently invariant when varying the threshold temperatures applied to slice-clouds identification.
The surface roughness of Al, Ag and Ni nano-powders which were prepared by pulsed wire evaporation method was quantified based upon the fractal theory. The surface fractal dimensions of metal nano-powders were determined from the linear relationship between In and Inln () using multi-layer gas adsorption theory. Moreover, the fractal surface image was realized by computer simulation. The relationship between preparation condition and surface characteristics of metal nano-powders was discussed in detail.
We have estimated the fractal dimension of the molecular clouds in the Antigalactic Center based on the 12CO (J = 1- 0) and 13CO (J = 1- 0) database obtained using the 14m telescope at Taeduk Radio Astronomy Observatory. Using a developed code within IRAF, we were able to identify slice-clouds, and determined the dispersions of two spatial coordinates as well as perimeters and areas. The fractal dimension of the target region was estimated to be D = 1.34 for low resolution 12CO (J = 1 - 0) database, and D = 1.4 for higher resolution 12CO (J = 1 - 0) and 13CO (J = 1 - 0) database, where P ∝ AD/2. The sampling rate (spatial resolution) of observed data must be an important parameter when estimating fractal dimension. Our database with higher resolution of 1 arcminute, which is corresponding to 0.2 pc at a distance of 1.1 kpc, gives us the same estimate of fractal dimension to that of local dark clouds. Fractal dimension is apparently invariant when varying the threshold temperatures applied to cloud identification. According to the dispersion pattern of longitudes and latitudes of identified slice-clouds, there is no preference of elongation direction.
In this paper, we propose the improved initial image estimation method for a fast fractal image decoding. When the correlation between a domain and a range is given as the linear equation, the value of initial image estimation using the conventional method is the intersection between its linear equation and y=x. If the gradient of linear equation is large, that the difference of the value between each adjacent pixels is large, the conventional method has disadvantage which has the impossibility of exact estimation. The method of the proposed initial image estimation performs well by two steps. he first step can improve the disadvantage of the conventional method. The second step upgrades the range value which was found previous step by referring information of its domain. Though the computational complexity for the initial image estimation increses slightly, the total computational complexity decreases by 30% than that of the conventional method because of diminishing in the number of iterations.
Employability has recently become the first target of the national higher education. Its model has been updated to catch the new trend of Industry 4.0. This paper aims at analyzing and ranking the determinants of undergraduate employability, focusing on business and economics majors in Ho Chi Minh City, Vietnam. In-depth interviews with content analysis have been primarily conducted to reach an agreement on a key group of factors: human capital, social capital, and identity. The Stochastic Fractal Search Algorithm (SFSA) is then applied to rank the sub-factors. Human capital is composed of three major elements: attitude, skill, and knowledge. Social capital is approached at both structural and cognitive aspects with three typical types: bonding, bridging, and linking. The analysis has confirmed the change of priority in employability determinants. Human capital is still a driver but the priority of attitude has been confirmed in the contemporary context. Then, social capital with the important order of linking, bridging, and bonding is emphasized. Skill, knowledge, and identity share the least weight in the model. It is noted that identity is newly proposed in the model but a certain role has been found. The findings are crucial for education strategies to enhance university graduate employability.
기존의 프랙탈 압축 방법은 전체 영상을 도메인 영역으로 하여 몇 개의 레인지블록으로 재분할하여 하 나의 도메인 블록에 자신의 부분영역들을 근사화 시키므로 인공적인 형상을 만들어 내는 데는 효과적이나 컴퓨터 구현이 어렵다, 본 연구에서는 전산화단층촬영의 선형변환을 통하여 탐색밀도에 따른 부호화시간, 부호화 바이트, 압축률 및 PSNR를 구하고, 에러 판정 허용오차 임계치를 크게 하면 압축률은 더 높일 수 있으나 화질에 영향을 준다. 즉 화질보다 압축률에 비중이 큰 영상은 에러 판정 허용 오차 임계치를 크게 하여 에러 블록을 줄여 부호화하면 된다. 닮은 블록의 조합을 찾기 위한 탐색 작업시 계산량이 많으므로 부호화시간이 많이 걸리는 점이 생겨서 추후 블록을 근사시키기 위해 아핀변환과 같은 크기가 크고 복잡 한 블록을 근사화 시키기는 어려워서 이에 대한 연구가 더 진행되어야 할 것으로 본다.
현재까지 이미지의 복잡성을 추정하기 위하여 여러 가지 프랙탈 차원 추정법들이 제안되어 왔으나, 그 중에서도 박스 계수법이 단 순하면서도 신뢰성이 높아 공학, 과학, 의료, 지질학 등 많은 분야에 응용되고 있다. 박스 계수법은 스텝크기 를 변경해가면서 이미지를 × 크기의 박스로 분할하고 프랙탈 도형이 포함된 박스를 계수하여 프랙탈 차원을 추정하게 되며, 이때 분할되는 박스의 개수가 정수가 되도록 이미지의 크기가 2의 거듭제곱인 정사각형을 사용하게 된다. 그러나 이미지 크기가 다르면 × 크기가 아닌 박스는 버리게 되고 여기에 프 랙탈 도형이 있으면 정밀도 저하의 원인이 된다. 이런 문제점을 개선하기 위하여 본 논문에서는 버리는 박스에 프랙탈 도형이 포함되면 실수 계수하여 정수 계수에 합산하는 한 방법을 제시한다. 제안된 방법을 프랙탈 차원이 잘 알려진 두 결정형 이미지에 적용시켜 절대오차의 평균 값을 얻고 기존의 박스 계수법과 삼각 박스 계수법의 결과와 비교한다. 제안된 방법은 이미지의 크기가 달라도 안정한 값을 얻을 뿐만 아니라 다른 두 방법과 비교하였을 때 더 만족스러운 결과를 보임을 밝힌다. 또 구글맵에서 취한 우리나라 해안선과 조도 해안선 이미지에 적용시켜 그 복잡성을 계량한다.
본 논문에서는 프랙탈 부호화시 변환식의 계수를 찾는 과정에서 블럭의 탐색 영역을 줄이기 위해 탐색 영역인 도메인블록의 특성을 화소의 밝기의 평균에 의한 클래스와 분산에 의한 클래스로 분류하여 리스트를 구성한 후 레인지블록과 같은 클래스를 가지는 도메인블록만 검색하도록 하면서 도메인블럭 탐색시 1 차 허용 오차 한계값을 제어하여 부호화 시간을 향상시켰다. 또한 쿼드트리분할법으로 레인지블록의 크기를 가변시켜 변환( w i )의 수를 줄임으로서 압축효율을 높이고 레인지블록의 크기에 따라 탐색 영역의 탐색 밀도를 변화시켜 화질 개선을 시도하였으며 이러한 영상 기법을 24-bpp 컬러 영상 압축에 적용하였다. 먼저 RGB표색계를 휘도신호와 채도신호를 가지는 YIQ표색계로 변환한 후 영상 정보의 일부분만 차지하고 있는 색의 정보를 나타내는 I,Q신호는 공간평균을 취하여 1/4로 축소하여 부호화하고 복원시에 선형 보간법을 이용하여 다시 원 영상으로 확대하였다. 그 결과 영상의 화질에는 거의 손실이 생기지 않았고 서로 독립성이 강한