Geopolymer, also known as alkali aluminum silicate, is used as a substitute for Portland cement, and it is also used as a binder because of its good adhesive properties and heat resistance. Since Davidovits developed Geopolymer matrix composites (GMCs) based on the binder properties of geopolymer, they have been utilized as flame exhaust ducts and aircraft fire protection materials. Geopolymer structures are formed through hydrolysis and dehydration reactions, and their physical properties can be influenced by reaction conditions such as concentration, reaction time, and temperature. The aim of this study is to examine the effects of silica size and aging time on the mechanical properties of composites. Commercial water glass and kaolin were used to synthesize geopolymers, and two types of silica powder were added to increase the silicon content. Using carbon fiber mats, a fiber-reinforced composite material was fabricated using the hand lay-up method. Spectroscopy was used to confirm polymerization, aging effects, and heat treatment, and composite materials were used to measure flexural strength. As a result, it was confirmed that the longer time aging and use of nano-sized silica particles were helpful in improving the mechanical properties of the geopolymer matrix composite.
본 논문에서는 지오폴리머의 상변화를 관찰하기 위하여 나노인덴테이션 데이터를 가우시안 믹스쳐 모델로 분석하는 방법을 제시 하였다. 지오폴리머는 일반 시멘트 대비 CO2 발생량을 줄일 수 있어 시멘트 대체 재료로써 많은 연구가 이루어지고 있다. 기존 연구들 로부터 최적의 실리콘/알루미늄 비율을 찾았으나 1.8 초과에서 압축강도 저하의 원인은 아직 불분명하다. 본 연구에서는 실리콘/알루 미늄 비율이 재료에 미치는 영향을 조사하고자 나노인덴테이션 실험을 수행하였다. 실험 결과를 가우시안 믹스쳐 모델로 상분석하였 고, 실리콘/알루미늄 비율이 증가할수록 재료가 균질거동을 하는 것을 관찰할 수 있었다. 본 연구결과는 강도저하를 규명하는데 직접 적인 근거로 활용될 수 있을 것으로 기대된다.
Geopolymer is an alumina silicate-based ceramic material that has good heat-resistance and fire-resistance; it can be cured at room temperature, and thus its manufacturing process is simple. Geopolymer can be used as a reinforcement or floor finish for high-speed curing applications. In this manuscript, we investigate a high-speed curing geopolymer achieved by adding calcium to augment the curing rate. Metakaolin is used as the main raw material, and aqueous solutions of KOH and K2SiO3 are used as the activators. As a result of optimizing the high bending strength as a target factor for geopolymers with SiO2 / Al2O3 ratio of 4.1 ~ 4.8, the optimum ranges of the active agent are found to be 0.1 ≤ K2O / SiO2 ≤ 0.4 and 10 ≤ H2O / K2O ≤ 32.5, and the optimum range of the curing accelerator is found to be 0.82 Ca (OH)2 / Al2O3 2.87. The maximum flexural strength is found to be 1.35 MPa at Ca (OH)2 / Al2O3 = 2.82, K2O / SiO2 = 0.3, and H2O / K2O = 11.3. The physical and thermal properties are analyzed to validate the applicability of these materials as industrial insulating parts or repairing·finishing materials in construction.
Fly ash is used as alumina-silicate resource material to reaction processing on geopolymer materials. The strength of material is belonging to alkaline liquid, fly ash, activity reaction of fly ash. Geopolymer concrete as non-toxic, bleed free and high strength material can be used for construction on rigid pavement. Study on influence of polypropylene fiber on performance characteristic of geopolymer concrete is considered. In this research, the mix proportion with fly ash and alkaline liquid is used to react on geopolymer concrete. The poly-propylene fiber in range from 0 to 0.5% by volume is added in mixture of geopolymer concrete. The ratio between length and diameter in range of 100-500 is investigated. The results are indicated that workability of fresh concrete is reduced by using poly-propylene fiber. The adding of poly-propylene fiber is significantly affected on characteristic of geopolymer concrete. Poly-propylene fiber can be distributed in fly ash matrix and reduced shrinkage of concrete during activation. After geopolymerization, compressive and the flexural strength of concrete produced with fibers are enhanced up to 10% and 20%, respectively. However, when the length to diameter ratio increases, compressive strength is tended to decrease with mixture using polypropylene fiber.
Geopolymers have many advantages over Portland cement, including energy efficiency, reduced greenhouse gas emissions, high strength at early age and improved thermal resistance. Alkali activated geopolymers made from waste materials such as fly ash or blast furnace slag are particularly advantageous because of their environmental sustainability and low cost. However, their durability and functionality remain subjects for further study. Geopolymer materials can be used in various applications such as fire and heat resistant fiber composites, sealants, concretes, ceramics, etc., depending on the chemical composition of the source materials and the activators. In this study, we investigated the thermal properties and microstructure of fly ash and blast furnace slag based geopolymers in order to develop eco-friendly construction materials with excellent energy efficiency, sound insulation properties and good heat resistance. With different curing times, specimens of various compositions were investigated in terms of compressive strength, X-ray diffraction, thermal property and microstructure. In addition, we investigated changes in X-ray diffraction and microstructure for geopolymers exposed to 1,000 oC heat.
Fly ash is one of the aluminosilicate sources used for the synthesis of geopolymers. The particle size distribution of fly ash and the content of unburned carbon residue are known to affect the compressive strength of geopolymers. In this study, the effects of particle size and unburned carbon content of fly ash on the compressive strength of geopolymers have been studied over a compositional range in geopolymer gels. Unburned carbon was effectively separated in the -46μm fraction using an air classifier and the fixed carbon content declined from 3.04 wt% to 0.06 wt%. The mean particle size (d50) decreased from 22.17μm to 10.79μm. Size separation of fly ash by air classification resulted in reduced particle size and carbon residue content with a collateral increase in reactivity with alkali activators. Geopolymers produced from carbon-free ash, which was separated by air classification, developed up to 50 % higher compressive strength compared to geopolymers synthesized from raw ash. It was presumed that porous carbon particles hinder geopolymerization by trapping vitreous spheres in the pores of carbon particles and allowing them to remain intact in spite of alkaline attack. The microstructure of the geopolymers did not vary considerably with compressive strength, but the highest connectivity of the geopolymer gel network was achieved when the Si/Al ratio of the geopolymer gel was 5.0.
When a new bonding agent using coal ash is utilized as a substitute for cement, it has the advantages of offering a reduction in the generation of carbon dioxide and securing the initial mechanical strength such that the agent has attracted strong interest from recycling and eco-friendly construction industries. This study aims to establish the production conditions of new hardening materials using clean bottom ash and an alkali activation process to evaluate the characteristics of newly manufactured hardening materials. The alkali activator for the compression process uses a NaOH solution. This study concentrated on strength development according to the concentration of the NaOH solution, the curing temperature, and the curing time. The highest compressive strength of a compressed body appeared at 61.24MPa after curing at 60˚C for 28 days. This result indicates that a higher curing temperature is required to obtain a higher strength body. Also, the degree of geopolymerization was examined using a scanning electron microscope, revealing a micro-structure consisting of a glass-like matrix and crystalized grains. The microstructures generated from the activation reaction of sodium hydroxide were widely distributed in terms of the factors that exercise an effect on the compressive strength of the geopolymer hardening bodies. The Si/Al ratio of the geopolymer having the maximum strength was about 2.41.
Geopolymer is a term covering a class of synthetic aluminosilicate materials with potential use in a number of areas, but mainly as a replacement for Portland cement. In this study, geopolymers with fly ash and meta kaolin were prepared using KOH as an alkali activator and water glass. The effect of water glass on the microstructures and the compressive strength of the geopolymer was investigated. As the amount of water glass increased, the dissolved inorganic binder particles in the geopolymers increased due to polymerization, resulting in a dense microstructure. The meta kaolin-based geopolymer showed a better extent of polymerization and densification than that of the fly ash-based geopolymer. XRD data also suggested that polymerization in meta kaolin-based geopolymers should be active resulting in the formation of an amorphous phase with an increasing amount of water glass. The compressive strength of the geopolymer was also dependent on the amount of water glass. The compressive strength of the geopolymers from both fly ash and meta kaolin increased with an increasing amount of water glass because water glass improved the extent of polymerization of the inorganic binder and resulted in a dense microstructure. However, the addition of water glass to the geopolymer did not seem to be effective for the improvement of compressive strength because the meta kaolin-based geopolymer mainly consisted of a clay component. For this reason, the fly ash-based geopolymer showed a higher value of compressive strength than the meta-kaolin geopolymer.
Geopolymer materials are attractive as inorganic binders due to their superior mechanical and eco-friendly properties. In the current study, geopolymer-based cement was prepared using aluminosilicate minerals from fly-ash with KOH as an alkaline-activator and Na2SiO3 as liquid glass. Then, calcium carbonate powder from a clam shell was mixed with the geopolymer and the mixture was coated on a concrete surface to provide points of attachment for environmental organisms to grow on the geopolymers. We investigated the effect of the shell powder grain size on the microstructure and bonding property of the geopolymers. A homogeneous geopolymer layer coated well on the concrete surface via aluminosilicate bonding, but the adhesiveness of the shell powder on the geopolymer cement was dependent on the grain size of the shell powder. Superior adhesive characteristics were shown in the shell powder of large grain size due to the deep penetration into the geopolymer by their large weight. This kind of coating can be applied to the adhesiveness of eco-materials on the surface of seaside or riverside blocks.
Non-sintering cement was manufactured with briquette ash. Alkali activator for compression bodies used a NaOH solution. In order to apply alkali-activated briquette ash and the non-sintering cement to concrete, several experimental studies were performed. It was necessary to study the binder obtained by means of a substitute for the cement. This study concentrated on strength development according to the concentration of NaOH solution, the curing temperature, and the curing time. The highest compressive strength of compression bodies appeared as 353kgf/cm2 cured at 80˚C for 28 days. This result indicates that a higher curing temperature is needed to get a higher strength body. Also, geopolymerization was examined by SEM and XRD analysis after the curing of compression bodies. According to SEM and XRD, the main reaction product in the alkali activated briquette ash is aluminosilicate crystal.
In this paper, fly ash was investigated as a basic Si-Al ingredient of geopolymer. Based on compressive and flexural strength, the replacement percentage of fly ash and 3 types of curing regimes were studied to obtain the optimum synthesis condition. The results showed that geopolymer containing 30% fly ash that was prepared at 80˚C for 8 hours, exhibited high mechanical strength. The compressive and flexural strength of the fly ash based geopolymer were 32.2 and 7.15MPa, respectively. In order to investigate the durability behavior of fly ash based geopolymer concrete, CI permeability, freeze-thaw tests were also carried out. The measured results indicated that fly ash based gopolymer concrete had 2.63 times lower coefficient of chloride-ion diffusion and could withdraw 2.2 times more freeze-thaw cycles as compared to Portland concrete with the same compressive strength.
The need for the development of sustainable, efficient, and green radioactive waste disposal methods is emerging with the saturation of spent nuclear waste storage facilities in the Republic of Korea. Conventional radioactive waste management methods like using cement or glass have drawbacks such as high porosity, less chemical stability, high energy consumption, carbon dioxide production, and the generation of secondary wastes, etc. To address this gigantic issue of the planet, we have designed a study to explore the potential of alternative materials having easy processability, low carbon emissions and more chemical stability such as ceramic (hydroxyapatite, HAP) and alkali-activated materials (geopolymers, GP) to capture the simulated radioactive cobalt ions from the contaminated water and directly solidify them at low temperatures. Physical and mechanical properties of HAP alone and 15wt% GP incorporated HAP (HAP-GP- 15) composite were studied and compared. The surface of both materials was fully sorbed with an excess amount of Co(II) ions in the aqueous system. Co(II) sorbed powders were separated from aqueous media using a centrifuge machine operating at 5,000 RPM for 10 minutes and dried at 100°C for 8 hours. The dried powders were then placed in stainless steel molds, and shaped into cylindrical pellets using a uniaxial press at a pressure of 1 metric ton for 1 minute. The pellets were sintered at 1,100°C for 2 hours at a heating rate of 10°C/min. Following this, the water absorption, density, porosity, and compressive strength of the polished pellets were measured using standard methods. Results showed that HAP has a greater potential for decontamination and solidification of Co(II) due to its higher density (2.65 g/cm3 > 1.90 g/cm3), less open porosity (16.2±2.9% < 42.4 ±0.9%) and high compressive strength (82.1±10.2 MPa > 6.9±0.8 MPa) values at 1,100°C compared to that of HAP-GP-15. Nevertheless, further study with different constituent ratio of HAP and GP at various temperatures is required to fully optimize the HAP-GP matrix for waste solidifications.
The immobilization of low- and intermediate-level radioactive waste (LILW) is crucial for its final disposal in repositories. While cementitious waste forms have conventionally been used for immobilizing various LILWs, they suffer from several issues, including poor durability, low resistance to leaching, and limited waste loading capacity. As an alternative, alkali or acid-activated geopolymer waste forms have garnered global attention. Unlike cementitious waste forms, geopolymer waste forms exhibit excellent physicochemical characteristics due to their three-dimensional amorphous structure and low calcium content. In this work, we provide an overview of geopolymer waste form research being conducted in countries such as Japan, the United Kingdom, the European Union, and South Korea. We specifically focus on the immobilization of soil waste, spent ion exchange resins, organic liquid waste, and evaporator concentrate (borate waste). We also identify the factors influencing the physicochemical characteristics of geopolymer waste forms and their immobilization performance. We propose a guide for optimizing the molar mixing formulations of geopolymer waste forms, including the selection of appropriate precursor materials. Additionally, we discuss the future prospects and significant challenges in the field of geopolymer waste forms that need to be addressed for their application in radioactive waste management.