Macrophages secrete various cytokines and inflammatory mediators, resulting in playing critical roles in inflammation and immunity. In this study, we investigated anti-inflammatory and immune enhancing properties of PB203, which is a water-soluble extract powder from the fruit of Actinidia polygama, in macrophages. A. polygama is a medicinal plant traditionally known to treat abdominal pain, stroke and rheumatoid arthritis. However, the molecular mechanism for the immune modulation of PB203 is still unclear. Therefore, we assessed the effects of PB203 on the lipopolysaccharide (LPS)-induced inflammation and immune activation, and elucidated its action mechanism in mouse macrophage, RAW264.7 cells. PB203 significantly suppressed not only the levels of nitric oxide (NO), prostaglandin E2, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), but also the mRNA expression of inducible NO synthase, cyclooxygenase-2, TNF-α and IL-1β in LPS-stimulated RAW264.7 cells. We also found that these anti-inflammatory activities of PB203 were mediated through the inhibition of toll-like receptor 4 and nuclear factor kappa B (NF-κB) induced by LPS. On the other hand, in normal macrophages, PB203 dose-dependently elevated the gene expression of immunomodulators including granulocyte-macrophage colony-stimulating factor, granulocyte colony-stimulating factor, monocyte chemoattractant protein-1 and TNF-α in a statistically significant manner. The expression of IL-10, IL-1β, IL-6, and interferon-γ were also remarkably upregulated by the treatment of 500 μg/mL PB203. In addition, PB203-mediated production of NO and TNF-α was attenuated by NF-κB inhibition in RAW264.7 cells. Interestingly, PB203 promoted the production of nuclear factor erythroid-2-related factor 2, resulting in the increased level of heme oxygenase-1, which is a representative antioxidant enzyme, in both LPS-stimulated and normal RAW264.7 cells. Taken all together, these results suggest that PB203 may have great potential as the candidate of anti-inflammatory agent for improving inflammatory diseases or immune enhancing agent for preventing infectious diseases. Keywords: Actinidia polygama extract (PB203); macrophages; immunomodulator; nuclear factor kappa B (NF-κB); heme oxygenase-1 (HO-1)
The α-Gal epitope (Galα1,3Galα1,4GlcNAc-R) is responsible for hyperacute rejection (HAR) during transgenic pig-to-non-human primate xenotransplantation. To overcome HAR after xenografts, it is essential for the inactivation of α1,3Galactosyltransferase (GT) gene by the homozygotic knocked out of GT-/- and the isoglobotrihexosylceramide synthase (iGb3s-/-). This study was performed to investigate the generation and characterization of the α1,3GT-MCP/-MCP+iGb3-/- transgenic cells. Ear fibroblast cells from the GT-MCP/-MCP pig were cultured and used to positive control. For iGb3s knock out, the Cas9-GFP-iGb3s vector was transfected into the GT-MCP/-MCP cells. The Cas9-GFP-iGb3s transfected cells were sorted and sequenced for the selection of GT-MCP/-MCP+ iGb3s-/- cells. Among the three sorted cell lines, one transgenic cell line was homozygously deleted 3 bases and 10 bases in each chromosome, respectively. To characterize an expression of α-Gal epitope, a wild type and the transgenic cells were measured by FACS Aria using BS-IB4 lectin antibody. The expression of α-Gal epitope in GT-MCP/-MCP cells (<0.01 %) were significantly down-regulated to the range of wild type (99.4 %) fibroblast cells (p<0.05). To analyze the function of iGb3s, α -Gal epitope expressions were measured for the GT-MCP/-MCP, GT-MCP/-MCP+iGb3s-/+, and GT-MCP/-MCP+iGb3s-/-. The range was 95.8%, 94.2%, and 75.8%, respectively. Interestingly, there was a negative range (16.2%) of α-Gal epitope -/- section in GT-MCP/-MCP+iGb3s-/-, compared to 2.74% of GT-MCP/-MCP+iGb3s-/+ and 1.4% of WT, respectively. Our results demonstrated that iGb3s-/-combined with GT-/- had a function to inhibit α-Gal epitope expression in pig cells. Further studies are needed to evaluate the functions of double gene knock out to minimize a HAR response after xenotransplantation.
Sasa quelpaertensis Nakai is a type of edible bamboo grass distributed on Jeju Island, Korea. S. quelpaertensis has been used as afolk medicine for treatment of a variety of ailments. It has been reported to present biological effects, including anti-inflammatory and antioxidant effects. In this study, we demonstrate that S. quelpaertensis Nakai extract (SNE) rescues immunocytes from gamma radiation-induced apoptosis and oxidative DNA damage. We examined the cytotoxicity, cell proliferation, DNA damage, apoptosis, and generation of reactive oxygen species (ROS) in mice given SNE for 45 days in immune cells. To determine the splenocytes protection capability of SNE, gamma-ray was irradiated to the whole body of C57BL/6 mice. Our results suggest that SNE stimulated the proliferation of splenocytes without cytotoxic effects. In addition, SNE not only decreased DNA damage but also reduced apoptosis of splenocytes, and attenuated the production of ROS generation in hydrogen peroxide-induced splenocytes. Therefore, SNE can protect against gamma radiation-induced damage in mice.
Endothelial cells are a vital constituent of most mammalian organs and are required to maintain the integrity of these tissues. These cells also play a major role in angiogenesis, inflammatory reactions, and in the regulation of thrombosis. Angiogenesis facilitates pulp formation and produces the vessels which are essential for the maintenance of tooth homeostasis. These vessels can also be used in bone and tissue regeneration, and in surgical procedures to place implants or to remove cancerous tissue. Furthermore, endothelial cell regeneration is the most critical component of the tooth generation process. The aim of the present study was to stimulate endothelial regeneration at a site of acute cyclophosphamide (CP)-induced endothelial injury by treatment with human umbilical cord-derived endothelial/mesenchymal stem cells (hEPCs). We randomly assigned 16 to 20-week-old female NOD/SCID mice into three separate groups, a hEPC (1 × 105 cells) transplanted, 300mg/kg CP treated and saline (control) group. The mice were sacrificed on days 5 and 10 and blood was collected via the abdominal aorta for analysis. The alanine transaminase (ALT), aspartate aminotransferase (AST), serum alkaline phosphatase (s-ALP), and albumin (ALB) levels were then evaluated. Tissue sections from the livers and kidneys were stained with hematoxylin and eosin (HE) for microscopic analysis and were subjected to immunohistochemistry to evaluate any changes in the endothelial layer. CP treatment caused a weight reduction after one day. The kidney/body weight ratio increased in the hEPC treated animals compared with the CP only group at 10 days. Moreover, hEPC treatment resulted in reduced s-ALP, AST, ALT levels compared with the CP only group at 10 days. The CP only animals further showed endothelial injuries at five days which were recovered by hEPC treatment at 10 days. The number of CD31-positive cells was increased by hEPC treatment at both 5 and 10 days. In conclusion, the CP-induced disruption of endothelial cells is recovered by hEPC treatment, indicating that hEPC transplantation has potential benefits in the treatment of endothelial damage.
Recently, as a natural substance has been emphasized interest in research to enhance the immune function. Green lettuce (Lactuca sativa L.) is a popular vegetable used fresh and it contains various phytochemicals and antioxidant compounds, and has been reported to have various physiological activities such as antibacterial, antioxidant, antitumor and anti-mutagenic. However, only a few studies have investigated on the mechanism of action of immune-enhancing activity of lettuce. Therefore, in this study, the immunomodulatory activities and potential mechanism of action of Green lettuce extracts (GLE) were evaluated in the murine macrophage cell line RAW264.7. GLE significantly increased NO levels by RAW264.7 cells, as well as expressions of immunomodulators such as iNOS, COX-2, IL-1β, IL-6, IL-12, TNF-α and MCP-1. Although GLE activated ERK1/2, p38, JNK and NF-κB, GLE-mediated expressions of immunomodulators was dependent on p38, JNK and NF-κB. In addition, TLR4 inhibition blocked GLE-mediated expressions of immunomodulators and activation of p38, JNK and NF-κB. Taken together, these results demonstrated that TLR4-MAPK/NF-κB signalling pathways participated in GLE-induced macrophage activation and GLE could be developed as a potential immunomodulating functional food.
This study was conducted to explore the immune activity, anticancer activity and nitrile scavenging activities of methanol extracts from the various organs of four Korean resource plants. The immune responses from both human T and B cell line was significantly enhanced in the cell growth compared to control while the cell growth was influenced at a certain period of culture. The results revealed that the cell growth of both human T and B cell was altered in a time dependent manner. Among tested several resource plants, the flower extract of E. japonicum demonstrated a pronounced cytotoxicity against HCT-116 cell with an IC50 value 132.08 ㎍ ㎖-1. The flower extract from Corylopsis coreana had a promising scavenging activity against pH 1.2 compared to other species. Taken together, the studied resource plants have influenced significantly in response to immunity and also have the potential cytotoxicity and nitric scavenging activities. However, the species E. japonicum exhibited the pronounced activities from several resource plants. The result from this investigation suggests that the extracts of studied resource plant could be an addition to basic medicine for some diseases.
This study was executed to evaluate the immune activity, nitrite scavenging activity and ABTS radical scavenging activity against extracts of various concentration of ethanol solvent from Codonopsis lanceolata cultured at 6 local regions. The immune responses from both human T and B cell line was significantly enhanced in the cell growth compared to control while the cell growth was influenced at a certain period of culture. The results revealed that the cell growth of both human T and B cell was altered in a time dependent manner. The nitrite scavenging activity of ethanol extracts from various solvent concentration of C. lanceolata were affected by pH. At a pH of 1.2, the nitrite scavenging effect of all of the extracts tested observed higher than that of the other two pH ranges. There was no distinct detection of nitrite scavenging effects of the pH range 6.0. The ABTS radical scavenging activity was progressively increased in a dose-dependent manner, and the activity was the highest in 100% ethanol extract. The result from this investigation suggests that the extract of Codonopsis lanceolata could be an addition to basic medicine for immune modulation and natural food additives.
In this study we investigated effects of supplementation with ethyl acetate extracts of the brown alga Eisenia bicyclis on innate immune cells to evaluate the possibilities as an immunomoulator in exercise stress. Twenty male SD rats were divided into four groups and the treatments were as follows: A, no Eisenia bicyclis extract (EBE) (200 mg/kg) intake and maintained at rest ; B, no EBE intake and undergoing exercise ; C, EBE intake and undergoing exercise ; D, EBE intake and maintained at rest. After 5 weeks of oral supplementation, rats were undergoing intensive swimming exercises for 2 h and sacrificed to assess the effects on peritoneal macrophages, spleen cells and natural killer (NK) cells. We showed increasing effects on nitric oxide-inducible nitric oxide synthase (NO-iNOS) production by macrophages and no effects of NK tumoricidal activity and suppressive effects on spleen cell proliferation in exercise group. However, EBE supplementation suppressed NO-iNOS production by macrophages and increased NK tumoricidal activity and spleen cell proliferative response to mitogen in exercise group. Overall, these results that EBE supplementation has differential effects on innate immune response and could be useful as sports nutrition.
Implantation of the blastocyst into the maternal endometrium, mediated by well-differentiated primary cells of the placenta known as trophoblasts, grow in an invasive via complicated interaction with immune cells in the maternal myometrium. Placenta-derived stem cells (PDSCs), which is a fetal origin, display multi-lineages differentiation potential, and they are free of ethical concerns, easily accessible, abundant, and strongly immunosuppressive. However, the efficiency of PDSCs according to trophoblast invasion or immune modulation in implantation has not yet been evaluated. Here, we investigated the effects of PDSCs for trophoblast invasion as well as their potential for immune modulation of activated T cells when they co-cultured with PDSCs. Activated T cells and HTR-8SV/neo trophoblast cells were co-cultured with PDSCs according to cell dose-dependent manner. Activities for proliferation of T cells were analyzed by BrdU incorporation assay and cell invasions were estimated. Activation of T cells was significantly decreased in the group co-cultured with PDSCs comparing to normal fibroblast cells (p<0.05). In addition, trophoblast invasion by PDSCs have recorded a twofold increase than the normal fibroblast cells. These results contribute to our understanding of the potential roles of PDSCs, including immune modulation effects for trophoblast invasion in pregnancy, and provide a foundation for the development of new cell therapy-based strategies for the treatment of women with implantation.