검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 68

        1.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Municipal landfill leachate (MLL) contamination in surface water is a critical global issue due to the high concentration of toxic organics and recalcitrants. The biological treatment of MLL is ineffective due to an elevated concentration of ammoniacal nitrogen, which restricts the production of the recalcitrant degrading laccase enzyme. In this context, integrating an external laccase-anchored carbon catalyst (LACC) matrix system with the microbial system could be an efficient strategy to overcome the drawbacks of conventional biological MLL treatment technologies. In the present study, the LACC matrix was synthesized by utilizing nanoporous activated carbon (NAC) functionalized ethylene diamine (EDA) and glutaraldehyde (GA) (GA/EDA/NAC) matrix for the anchoring of laccase. The maximum anchoring capacity of laccase onto GA/EDA/ NAC was achieved to be 139.65 U/g GA/EDA/NAC at the optimized anchoring time, 60 min; pH, 5; temperature, 30 °C, and mass of GA/EDA/NAC, 300 mg and was confirmed by Fourier transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscope (SEM), and X-ray Diffraction (XRD) analyses. Further, the mechanistic study revealed the involvement of covalent bonding in the anchoring of laccase onto the functionalized surface of the GA/EDA/NAC matrix. The adsorption isotherm and kinetics of laccase anchoring onto the GA/EDA/NAC matrix were performed to evaluate its field-level application. Subsequently, the sequential microbial system (I-stage bacterial treatment followed by II-stage fungal treatment) and III-stage LACC matrix system could effectively reduce the COD by 94.2% and phenol by 92.36%. Furthermore, the Gas Chromatography-Mass Spectrophotometry (GC–MS) and FT-IR analyses confirmed the effective degradation of organic compounds and recalcitrants by the integrated microbial and LACC matrix system. The study suggested that the application of the LACC matrix system has resulted in the complete treatment of real-time MLL by overcoming the negative interference of elevated ammoniacal nitrogen concentration. Thus, the integrated microbial and LACC matrix approach could be considered to effectively treat the MLL without any secondary pollution generation.
        5,200원
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study presents a novel method for addressing the issue of high-concentration contaminants (ammonium, phosphate, antibiotics) in leachate arising from decomposing livestock carcasses. Antibiotics, developed to eliminate microorganisms, often have low biodegradability and can persist in the ecosystem. This research proposes design elements to prevent contamination spread from carcass burial sites. The adsorbents used were low-grade charcoal (an industrial by-product), Alum-based Adsorbent (ABA), and Zeolite, a natural substance. These effectively removed the main leachate contaminants: low-grade charcoal for antibiotics (initial concentration 1.05 mg/L, removal rate 73.4%), ABA for phosphate (initial concentration 2.53 mg/L, removal rate 99.9%), and zeolite for ammonium (initial concentration 38.92 mg/L, removal rate 100.0%). The optimal mix ratio for purifying leachate is 1:1:10 of low-grade charcoal, ABA, and zeolite. The average adsorbent usage per burial site was 1,800 kg, costing KRW 2,000,000 per ton. The cost for the minimum leachate volume (about 12.4 m3) per site is KRW 2,880,000, and for the maximum volume (about 19.7 m3) is KRW 4,620,000. These findings contribute to resolving issues related to livestock carcass burial sites and suggest post-management strategies by advocating for the effective use of adsorbents in leachate purification.
        4,600원
        4.
        2023.05 구독 인증기관·개인회원 무료
        The safe disposal of high-level radioactive waste is a critical concern in many countries, especially in the context of the increasing use of nuclear power to overcome climate change. To provide a comprehensive understanding of the behavior of the radionuclides in the crystalline natural barrier, sorption of the artificially synthesized high-level radioactive waste (HLW) leachate was conducted. Granite (-1,000 m from ground level) and biotite gneiss (-100 m from ground level) rock cores were collected from Gyeongju and Gwacheon, respectively. The rock cores were milled with a jaw crusher and steel disk mill and then sieved. The crushed rocks with a diameter of 0.6 – 1.0 mm were selected, washed three times with deionized water, and then dried. To synthesize the simulated HLW leachate, representative elements (U(VI), Se(IV), Mo(VI), and Ni(II)) were added to natural groundwater collected from Gyeongju. The kinetic sorption experiment was performed in a polypropylene bottle with a solid-to-liquid ratio of 100 g/L in the orbital shaking incubator (200 rotations per min, 25.0°C). After the sorption, the supernatants were filtered by a 0.2-μm polytetrafluoroethylene syringe filter and subsequently analyzed by inductively coupled plasma-mass spectrometry (ICP-MS). Through the kinetic change of aqueous concentration, the contact time has been determined to be 7 days. Ni(II) showed the highest distribution coefficients (Kd = 0.81 L/m2 for granite and 8 – 16 L/m2 for biotite gneiss), followed by U(VI) (Kd = 0.03 – 0.04 L/m2 for granite and 0.04 – 0.05 L/m2 for biotite gneiss). Highly mobile nuclides such as Se(IV) (Kd = 0.02 L/m2 for granite and 0.03 L/m2 for biotite gneiss) and Mo(VI) (Kd = 0.01 – 0.02 L/m2 for granite and 0.01 L/m2 for biotite gneiss) showed the lowest distribution coefficient. Our study provides insights into the migration-retention behaviors of the HLW leachate with granite and biotite gneiss in geological systems and verifies the sorption parameters, e.g., distribution coefficients, experimentally produced by other groups to ensure the safe disposal of HLW.
        5.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study focuses on the adsorption of organic matter mainly COD from pretreated landfill leachate of Lamdeng Khunou Solid Waste Management Plant, Manipur, India through the employment of H3PO4 treated activated carbon derived from Parkia speciosa (Petai) pods (PPAC). The adsorbent was analyzed for morphological and surface characterization by various methods including, Field emission scanning electron microscopy (FESEM), Energy Dispersive X-Ray Analysis (EDAX), Brunauer–Emmett–Teller (BET) surface area and pH at zero point charges ( pHZPC). The impacts of adsorption processes such as initial pH, temperature, equilibrium time and dose of adsorbent were considered to evaluate the performance of PPAC. At 20 °C, PPAC showed maximum COD removal of 93% within 90 min contact time, at optimum pH 2. Adsorption kinetic was able to explain by Lagergren’s pseudo-second-order equation and intraparticular diffusion models suggesting the combined behavior of both the physical and chemical adsorption of COD on PPAC. Through thermodynamics and isotherm studies, the adsorption of COD on PPAC is revealed to be exothermic with maximum monolayer coverage of 200 mg COD/g PPAC. The performance of the PPAC adsorbent is also compared with other existing reported adsorbents for treating leachate.
        4,900원
        10.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        During the decay process of food waste, odor and leachate are generally produced because food is easily decomposed due to its high organic and moisture contents. In this study, various food waste samples, including samples artificially prepared and collected from actual waste containers, were tested to determine odor and leachate production as the samples were decomposed at a constant temperature of 35°C. In the air phase, total volatile organic compounds (TVOCs), acetaldehyde (AA), methyl mercaptan (MM), hydrogen sulfide (H2S), and dimethyl sulfide (DMS) were measured as a function of the decay period for four days. The results of the experiment showed that TVOC and AA were produced at higher concentrations in the actual food waste than in all artificial wastes. The AA concentration accounted for about 90% of the TVOC in all of the waste samples except for the food waste containing meat and fish only. The concentrations of volatile sulfur compounds (VSCs) were generally lower than 100 μg/kg, and the concentration of DMS was the highest among the VSCs. In the waste sample containing meat and fish only; however, the concentration of VSCs increased up to 1,700 μg/kg, and mostly consisted of MM and DMS. Complex odor concentrations were found to be the highest after a decay period of 12-48 hours. In addition, the complex odor was mostly related to VSCs with low odor thresholds rather than the TVOC. The pH values mostly decreased from 5 to 3.5 as the waste samples were in the decomposition periods, while the pH value increased to 6 in the food waste containing meat and fish only. Consequently, odor intensity and leachate production were the highest in the 12-48 hour range as the decomposition started, and thus an appropriate control strategy needs to be implemented based on the waste composition and the decay period.
        4,300원
        11.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Acetate, propionate, butyrate are the major soluble volatile fatty acids metabolites of fermented food waste leachates. This work investigate the effects of volatile fatty acid on the growth rate and NH4-N, PO4-P removal efficiency of mixotrophic microalgae Chlorella vulgaris to treat digested food waste leachates. The results showed that acetate, propionate and butyrate were efficiently utilized by Chlorella vulgaris and microalgae growth was higher than control condition. Similar trends were observed upon NH4-N and PO4-P consumption. Volatile fatty acids promoted Chlorella vulgaris growth, and nutrient removal efficiencies were highest when acetate was used, and butyrate and propionate showed second and third. From this work it could be said that using mixotrophic microalgae, in this work Chlorella vulgaris, fermented food waste leachates can be treated with high efficiencies.
        4,000원
        12.
        2017.05 구독 인증기관·개인회원 무료
        음식폐기물 산발효액 내 존재하는 유기산은 산업 원료로 가치가 있으나 분리 비용이 높은 문제점이 있다. 본 연구에서는 저에너지 유기산분리를 위해 전기투석공정에서 산발효액 내 유기산의 이동현상과 운전조건 (전압, 희석율, pH) 간의 상관관계를 연구하였다. 아세트산과 부틸산으로 주로 구성된 음식물 산발효액 원액 (COD 기준 유기산 67.3 %) 을 실험실 규모 전기투석기를 사용하여 분리전압을 5 V ~ 12 V로 변화시켰을 때, 분리전압 8 V에서 최대 유기산 회수율 (COD 기준 89.4 %, 순도 86.8 %) 을 보였으며, 이 때 분리에 사용된 에너지는 0.286 kWh/kg-COD of VFAs로 나타났다. 전기투석과정에서 분자량 차이에 따른 유기산 간의 이동현상 차이는 발견되지 않았다.
        13.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we investigated influent and effluent water pollutants in 53 Public Sewage Treatment Works (PSTWs) where industrial wastewater or landfill leachate is combined four times for two years from 2014 to 2015. Also, we analyzed the characteristics of heavy metals and volatile organic carbons at influent and effluent of these PSTWs caused by sewage treatment combined with industrial wastewater or landfill leachate. As a result, six heavy metals such as barium, copper, iron, manganese, nickel and zinc, and four volatile organic carbons (VOCs) including phenols, di(2-)ethylhexyl phthalate (DEHP), formaldehyde and toluene were observed above detection limits in most of PSTWs. Also, it was revealed that six heavy metals such as hexavalent chromium, mercury, cadmium, chromium, nickel and selenium, and four VOCs including 1,1-dichloroethylene, vinyl chloride, naphthalene, and epichlorohydrin were observed more frequently according to precipitation. As a result of reviewing the monitoring data on “Water Quality Monitoring Networks” in lower watersheds of PSTWs, both heavy metals and VOCs were below detection limits, indicating that the effluent water had little influence on the watershed. Nevertheless for the better management of influent and effluent pollutants in PSTWs, it is necessary to establish the advanced management plans for water pollutants in PSTWs, which include a list of priority substances management, monitoring plans, and guidelines for industrial wastewater and landfill leachate combined in PSTWs.
        4,000원
        14.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Response surface methodology (RSM) based on a Box-Behnken Design (BBD) was applied to optimize the thermal-alkaline pre-treatment operating conditions for anaerobic digestion of flotation scum in food waste leachate. Three independent variables such as thermal temperature, NaOH concentration and reaction time were evaluated. The maximum methane production of 369.2 mL CH4/g VS was estimated under the optimum conditions at 62.0°C, 10.1% NaOH and 35.4 min reaction time. A confirmation test of the predicted optimum conditions verified the validity of the BBD with RSM. The analysis of variance indicated that methane production was more sensitive to both NaOH concentration and thermal temperature than reaction time. Thermal-alkaline pretreatment enhanced the improvement of 40% in methane production compared to the control experiment due to the effective hydrolysis and/or solubilization of organic matters. The fractions with molecular weight cut-off of scum in food waste leachate were conducted before and after pre-treatment to estimate the behaviors of organic matters. The experiment results found that thermal-alkaline pre-treatment could reduce the organic matters more than 10kD with increase the organic matters less than 1kD.
        4,000원
        15.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        VFAs like acetate are the major soluble metabolites of food waste leachates after digested. Therefore this study investigates the effect of acetate on growth rate and nutrient removal efficiency of Chlorella vulgaris to treat digested food waste leachates. The initial acetate concentration varied from 0 to 20 mM. As a result, Chlorella vulgaris growth rate was increased as high as the concentrations ranged from 0 to 20 mM. The same trend was observed with NH4-N and PO4-P consumption. The highest growth rate and the highest NH4-N, PO4-P removal rate were observed at acetate concentration of 20 mM. The microalgae growth rate and NH4-N, PO4-P removal rates were 1.5, 1.8, 2.3 times higher than the condition without acetate.
        4,000원
        16.
        2014.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Food waste leachate (FWL) is a serious pollutant waste coming from the food waste recycling facilities in Korea. FWL has a high organic matter content and high COD to nitrogen (COD/N) ratio, which can disturb efficient methane production in the anaerobic digestion of FWL. In the present study a microalga, Clorella vulgaris (C.V), was used as co-substrate for the FWL anaerobic digestion in order to supply nutrients, decrease the COD/N ratio and increase its methane yield. Different co-digestion mixtures (COD/N ratios) were studied by using biochemical methane potential test and modified Gompertz equation for kinetic study. Mixed substrate of FWL and C. vulgaris in the co-digestion clearly showed more the biomethane yield than the sole substrates. The maximum methane production, 827.7 mL-CH4/g-VS added, was obtained for COD/N ratio of 24/1, whereas the highest improvement of methane yield was found for COD/N ratio of 15/1.
        4,000원
        17.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        음식물 폐기물 침출수를 처리하는 분리막 결합 고온 혐기성소화공정(생물학적 반응조) (Anaeorobic Membrane Bioreactor, AnMBR)의 파일럿 운전에서 분리막의 교차여과 속도와 막간압력이 파울링에 미치는 영향을 관찰하였다. 연구 결과 정압여과 하에서 교차여과 속도가 증가할수록 파울링의 속도는 현격히 감소되었다. 그러나 이와 같은 영향은 낮은 막간압력에서 더욱 효과적이었다. 막간압력이 증가할수록 여과대상 물질의 압축성으로 인해 투과성이 상대적으로 낮은 파울링층(혹은 케익층)이 분리막 표면에 형성된 것에 기인된 듯하다. 여과대상 시료의 입도분석을 해 본 결과 입자크기는 약 10~100mum 범위에서 분포하였고 이에 따라 브라운확산에 의한 역수송보다 분리막 표면에서 교차여과에 의해 발생하는 전단력이 입자의 역수송에 더욱 기여하고 있음을 예측할 수 있었으며 이는 AnMBR의 연속운전을 통해 재확인할 수 있었다. 운전 후 막 부검을 실시한 결과 유기 및 무기 파울링이 모두 관찰되었으나 어느 것이 지배적인 파울링 기작을 나타내는지는 앞으로 더욱 연구가 필요하다. 무기 파울링의 경우 대부분 분리막 표면에서 스케일링 형성이 지배적이었으며, 따라서 분리막의 공극 막힘에 주로 기여하는 작은 콜로이드성 유기물질의 경우 분리막 표면에서 전단력에 의한 역수송 효과는 그다지 크지 않을 것으로 사료된다.
        4,000원
        18.
        2011.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        우라늄 오염토양을 동전기제염 시 많은 양의 동전기 침출액이 발생한다. 발생된 우라늄 침출액을 재이 용하기 위한 처리기술이 개발되었다. 동전기제염 시 발생된 우라늄침출액 내의 우라늄농도는 180 ppm이 었고, Mg(II), K(I), Fe(II), Al(III) 농도는 20 ppm∼1,210 ppm이었다. 우라늄침출액의 최적 처리공정은 혼합, 응집, 침전, 농축, 그리고 여과로 구성된다. 침전액의 pH를 11로 맞추기 위해, calcium hydroxide 는 3.0g/100ml 그리고 sodium hydroxide는 2.7g/100ml이 필요했다. 여러 침전실험 결과 NaOH+0.2g alum+0.15g magnetite가 여과를 위한 최적 침전혼합제로 선정되었다. NaOH+0.2g alum+0.15g magnetite 투입 시 침전입자의 평균크기는 600 ㎛이었다. pH=9에서 침전 후 상등액에 총 금속농도가 가 장 낮았기 때문에, 최적 침전을 위하여 먼저 0.2g/100 ml alum와 0.15g/100ml magnetite 투입한 후pH=9일 때까지 sodium hydroxide을 투입하여야 한다
        4,000원
        20.
        2007.02 구독 인증기관 무료, 개인회원 유료
        This study presented the plan for treatment plant as investigating the technical examination of existing landfill leachate treatment plant at Geumgo-Dong and the plan of landfill leachate treatment with sewage treatment. The R/O process in 1st stage landfill leachate treatment plant(plant capacity:150m3/d) was closed in consideration of economical aspect and efficiency. It is to be desired that the 1st stage and 2nd stage landfill leachate treatment (plant capacity: 250m3/d) are combined, and are converted the Pretreatment process with nitrogen treatment process, and after total landfill treatment leachate happened from landfill site is pretreated it is transferred the sewage treatment plant. Ammonia nitrogen load of landfill leachate that was transferredthe sewage treatment plant(plant capacity: 300,000m3/d). This load is no problem at now, but it is need change the inflow line for sewage treatment plant and the enlargement of pretreatment process in case that the raw landfill leachate is increased.
        5,400원
        1 2 3 4