검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 53

        1.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Strong ground motions at specific sites can cause severe damage to structures. Understanding the influence of site characteristics on the dynamic response of structures is crucial for evaluating their seismic performance and mitigating the potential damage caused by site effects. This study investigates the impact of the average shear wave velocity, as a site characteristic, on the seismic response of low-to-medium-rise reinforced concrete buildings. To explore them, one-dimensional soil column models were generated using shear wave velocity profile from California, and nonlinear site response analyses were performed using bedrock motions. Nonlinear dynamic structural analyses were conducted for reinforced concrete moment-resisting frame models based on the regional information. The effect of shear wave velocity on the structural response and surface ground motions was examined. The results showed that strong ground motions tend to exhibit higher damping on softer soils, reducing their intensity, while on stiffer soils, the ground motion intensity tends to amplify. Consequently, the structural response tended to increase on stiffer soils compared to softer soils.
        4,000원
        2.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The 2017 Pohang earthquake caused severe damage to low-rise piloti buildings. The damage was caused mainly by column shear failure, and some core walls were as well. The damaged piloti buildings in Pohang City could be relieved if they were designed correctly according to the standards at that time. However, the post-earthquake investigation revealed design, construction, and permission problems. To solve the problems, the Piloti Building Structure Design Guidelines that include strict specifications were published in 2018. Separately, KDS 41 17 00, the seismic design standard for buildings, was enacted in 2019 and it included the guideline contents. Therefore, at least after the publication of the guidelines, piloti buildings, designed by the standard and guidelines, can be expected to possess better seismic performance than existing piloti buildings. To confirm this, the probability of exceedance for several damage state thresholds was estimated for existing and designed piloti buildings. As a result, the probability of damage of designed piloti buildings was very low compared to existing ones. Consequently, it was confirmed that the guideline and standard adequately supplement the structural fragility of existing piloti buildings.
        4,000원
        3.
        2022.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the seismic performance of a two-story unreinforced masonry (URM) building was assessed following the linear and nonlinear static procedures specified in the seismic evaluation guideline of existing buildings. First, the provisions to assess failure modes and shear strengths of URM walls and wall piers were reviewed. Then, a two-story URM building was assessed by the linear static procedure using m-factors. The results showed that the walls and wall piers with aspect ratios he /l (i.e., effective height-to-length ratio) > 1.5 were unsafe due to rocking or toe crushing, whereas the walls with he /l ≤1.5 and governed by bed-joint sliding mainly were safe. Axial stresses and shear forces acted upon individual masonry walls, and wall piers differed depending on whether the openings were modeled. The masonry building was reevaluated according to the nonlinear static procedure for a more refined assessment. Based on the linear and nonlinear assessment results, considerations of seismic evaluation for low-rise masonry buildings were given with a focus on the effects of openings.
        4,200원
        4.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Current seismic fragility functions for buildings were developed by defining damage state threshold based on story drift concerning foreign references and using the capacity spectrum method based on spectral displacement. In this study, insufficient details and dependence on the core location of piloti-type buildings were not reflected in the fragility function because it was developed before the Pohang earthquake. In order to develop an improved one for piloti-type buildings, several types of core were selected, damage state threshold was determined based on the capacity of structural members, and three-dimensional analyses were utilized. As a result, seismic fragility functions based on spectral acceleration were developed for various core locations and different shear strengths of the column stirrup. The fragility of piloti-type buildings significantly varied according to core location, an additional single wall, and whether the contribution of column stirrup was included or not. To estimate fragility more reasonably, it is necessary to prepare the parameters to reflect actual state well.
        4,000원
        5.
        2021.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Ministry of the Interior and Safety in Korea developed seismic fragility function for various building types in 2009. Damage states for most building types were determined by structural analyses of sample models and foreign references because actual cases damaged by earthquakes rarely exist in Korea. Low-rise, piloti-type buildings showed severe damage by brittle failure in columns due to insufficient stirrup details in the 2017 Pohang earthquake. Therefore, it is necessary to improve damage state criteria for piloti-type buildings by consulting actual outcomes from the earthquake. An analytical approach was conducted by developing analysis models of sample buildings reflecting insufficient stirrup details of columns to accomplish the purpose. The result showed that current spectral displacements of damage states for piloti-type buildings might be too large to estimate actual fragility. When the brittle behavior observed in the earthquake is reflected in the analysis model, one-fourth through one-sixth of current spectral displacements of damage states may be appropriate for existing low-rise, piloti-type buildings.
        4,200원
        6.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 Aramid FRP와 모서리보강재로 구속한 엔지니어링플라스틱 보강을 통해 기둥의 횡구속 능력을 증대하여 콘크리트 피복 및 압괴 파괴를 지연시킴으로써 휨 항복 후 연성거동을 유도하여 기존 저층 필로티 건축물의 내진 성능을 확보하는 방법을 제시하고 저층 필로티 건축물의 내진취약요인을 분석하여 필요한 전단보강량을 산정, 제안공법의 목표전단보강을 설정하는 것을 목적으로 한다. 엔지니어링플라스틱을 활용한 기둥의 전단보강형상을 제안하고 필로티 구조의 내진취약요인 보강임계점 예측과 예제모델의 구조해석을 통해 제안공법의 목표전단보강량을 검증하였다. 구조해석 결과, 특별지진하중 적용 시, 휨-축력 내력 초과비율이 타 유형군에 비해 낮은 ST-A1(1축편심)을 기준으로 연면적 750m² 이하와 1축 편심 중심-강심편심율 18%이하에 해당될 경우에는 본 논문에서 제안하는 ‘고성능 복합섬유 패널 전단 보강법’을 적용할 수 있는 경계로 제한하고자 한다.
        4,300원
        7.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        여러 센서를 이용한 구조물의 구조 응답을 모니터링하는 사례가 증가하고 있다. 그러나 비용과 관리 문제로 인해 제한된 센서만이 구조물에 설치되어 일부의 구조 응답만을 수집하는 경우가 대부분이다. 이는 구조물의 전체 거동을 분석하는데 장애요소로 작용하게 된다. 따라서 제한된 센서를 이용해 센서가 설치되지 않은 위치에서의 응답을 신뢰할 수 있는 수준으로 예측하는 기술이 필요하다. 본 연구에서는 제한된 정보를 이용해 저층 건물 구조물의 지진 응답을 예측하는 해석적 연구를 수행한다. 활용 가능한 응답 정보는 1층과 최상층의 가속도 응답만을 사용할 수 있다고 가정한다. 두 정보를 이용하면 구조물의 1차 고유진동수를 얻을 수 있다. 1층 가속도 정보는 구조물의 가력 정보로 활용한다. 최상층의 가속도이력응답에 대한 오차와 대상 구조물의 1차 고유진동수 오차를 최소화하는 구조물의 질량과 강성 정보를 유전자알고리즘을 이용해 예측하는 기법을 제시한다. 제약조건은 고려하지 않는다. 탐색공간을 의미하는 설계변수의 범위를 결정하기 위해 인공신경망 기반의 파라미터 예측기법을 제시한다. 또한 유전자알고리즘을 통해 얻게 되는 해를 개선시키기 위해 앞서 언급한 인공신경망을 활용한다. 제시한 기법을 검증하기 위해 5층 구조물 예제를 사용한다.
        4,000원
        8.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 1988년 이전에 설계된 RC라멘+코어월 구조형식의 비내진 건축물을 선정하여 내진성능평가를 통해 현재 건축물들의 내진성능수준을 파악하고, 목표 내진성능수준에 적합하도록 보강 방안을 제시하였고, 보강방법별 성능을 비교하 였다. 보강 전 중앙코어 건축물과 측면코어 건축물의 내진성능수준은 모두 붕괴방지수준이었지만 보강 후에는 두 건축물 모두 목표 내진성능수준인 거주가능수준으로 성능이 향상되는 것으로 나타났다. 보강방법별 성능을 비교한 결과 중앙코어 건축물의 경우 벽체보강방법이 가장 성능이 우수한 것으로 나타났으며, 측면코어 건축물의 경우 가새보강방법이 가장 성능이 우수한 것으로 나타났다.
        4,000원
        9.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 필로티는 공간의 활용도나 미관상의 이유로 많이 사용되고 있다. 필로티는 외벽보다는 안쪽에 위치하나 외기에 접하는 형태로 강한 바람이 불 때, 바람길이 형성되고 강한 압력을 받아 필로티의 천장 및 벽면 부분의 외장재가 탈락하는 피해가 발생한다. 현재 건축구조기준(KBC-2016)에서는 필로티 건축물에 대한 천장 및 벽면의 풍압계수가 제시되어있지 않아 필로티 부분의 주골조 및 외장재에 대한 구조설계에 어려움이 있다. 이에 본 논문에서는 저층구조물의 관통형 필로티에 대한 풍압실험을 진행하여 풍압계수를 산출하였다. 실험 모형의 변수는 필로티의 높이와 폭으로 두었으며 변수에 따라 풍압계수를 산정하고 풍압분포의 변화를 비교·분석하 였다. 따라서, 필로티의 여러 변수 중 가장 불리한 풍압계수를 제시하여 이를 주골조와 외장재 설계 시 기초자료로 제공하고자 한다.
        4,000원
        10.
        2019.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the results of an analytical investigation on the seismic behavior of two residential 4-story bearing wall buildings with pilotis, each of which has symmetric or unsymmetric wall arrangement at their piloti level, are presented. The dynamic characteristics and lateral resistance of the piloti buildings were investigated through linear elastic and nonlinear static analyses. According to the results, the analytical natural period of vibration of the piloti buildings were significantly shorter than the fundamental period calculated in accordance with KBC 2016. In the initial elastic behavior, the walls resisting in-plane shear contributed to the lateral stiffness and strength, while the contribution of columns resisting flexural moments in double curvature was limited. However, after the shear cracking and yielding of the walls occurred, the columns significantly contributed to the residual strength and ductility. Based on those investigations, design recommendations of low-rise bearing wall buildings with piloti configuration are given.
        4,300원
        11.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Following a 5.8 magnitude earthquake on September 12, 2016 in Gyeongju Province, a magnitude 5.4 earthquake occurred in the northern region of Pohang City on November 15, 2017 in South Korea. Only 7.9 % of the building structures are earthquake-resistant, according to the recent survey conducted by the government agencies in October 2017. In this paper, the linear analysis seismic performance evaluation procedure of the existing school structures presented in the revised methodology(Seismic Performance Evaluation Procedure and Rehabilitation Manual for School Facilities) was introduced. In this paper, the linear analysis evaluation procedure presented in the revised methodology was introduced and the seismic performance index of the example structure was evaluated using the linear analysis evaluation procedure. The seismic retrofit was verified by the linear and nonlinear dynamic analyses using Perform 3D. The analysis results show that the dissipated inelastic energy is concentrated on the retrofitted shear wall and the maximum inter-story drift of the stadium model structure with damping system satisfies the requirement of the current code.
        4,000원
        12.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study examines the seismic failure of RC low-rise building structures having irregularities at the ground story during the 15 November 2017 Pohang, Korea, earthquake, Mw = 5.4, which is the second strongest since the government began monitoring them in 1978 in South Korea. Some 2,000 private houses were damaged or destroyed in this earthquake. Particularly, serious damage to the piloti story of RC low-rise residential building structures of fewer than five stories was observed within 3 km of the epicenter with brittle shear failure of columns and walls due to severe torsional behavior. Buildings below six stories constructed before 2005 did not have to comply with seismic design requirements, so confinement detailing of columns and walls also led to inadequate performance. However, some buildings constructed after 2005 were damaged at the flexible side of the piloti story due to the high torsional irregularity. Based on these results, this study focuses on the problems of the seismic torsion design approach in current building codes.
        4,000원
        13.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, measuring instruments for SHM of structures had being developed. In general, the wireless transmission of sensor signals, compared to its wired counterpart, is preferable due to its absence of triboelectric noise and elimination of the requirement for cumbersome cable. Preliminary studies on the continuous vibration measurement of high-rise buildings using MEMS sensors have been carried out. However, the research on the low-rise buildings with relatively small vibration levels is insufficient. Therefore, in this paper, we used the wireless MEMS sensor to compare and analyze the vibration measurements of three low-rise buildings.
        4,000원
        14.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        After an earthquake occurred in the Gyeongju, 2016, many low-story buildings have been questioned in terms of the seismic performance since mostly they have been exempted from the seismic design requirement since 1988. In this study, a 3-story moment resisting frame (MRF) building was analyzed and evaluated the seismic performance. Due to the insufficient seismic performance required for the seismic performance levels, three different seismic retrofit schemes were proposed and their seismic performances were re-evaluated. While steel brace and open shear wall retrofit systems mainly focused on the strength retrofit, the VES damper retrofit system is mainly to enhance the energy dissipation capacity of the system and resultes in the increased ductility. The original building and 3 retrofitted buildings were evaluated using the nonlinear static and nonlinear dynamic analyses and suggestions were proposed. Through the analysis of nonlinear time history and push-over using MIDAS/Gen program, damages of the building in terms of top story and average story drift and effect of reinforcement were analyzed.
        4,000원
        15.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The risk-based assessment, also called time-based assessment of structure is usually performed to provide seismic risk evaluation of a target structure for its entire life-cycle, e.g. 50 years. The prediction of collapse probability is the estimator in the risk-based assessment. While the risk-based assessment is the key in the performance-based earthquake engineering, its application is very limited because this evaluation method is very expensive in terms of simulation and computational efforts. So the evaluation database for many archetype structures usually serve as representative of the specific system. However, there is no such an assessment performed for building stocks in Korea. Consequently, the performance objective of current building code, KBC is not clear at least in a quantitative way. This shortcoming gives an unresolved issue to insurance industry, socio-economic impact, seismic safety policy in national and local governments. In this study, we evaluate the comprehensive seismic performance of an low-rise residential buildings with discontinuous structural walls, so called piloti-type structure which is commonly found in low-rise domestic building stocks. The collapse probability is obtained using the risk integral of a conditioned collapse capacity function and regression of current hazard curve. Based on this approach it is expected to provide a robust tool to seismic safety policy as well as seismic risk analysis such as Probable Maximum Loss (PML) commonly used in the insurance industry.
        4,000원
        16.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study is the compared seismic performance that are difference between the performance of structures on various site classes and beam-column connection. this analysis model was designed the previous earthquake load. To compare the performance levels of the structure was subjected to nonlinear static and nonlinear dynamic analysis. Nonlinear analysis was used to The Perform 3D program. Nonlinear static analysis was compared with the performance point and Nonlinear dynamic analysis was compared the drift ratio(%). Analysis results, the soft site class of the displacement was more increase than rock site classes of the displacement. Also The smaller the displacement was increased beam-column connection stiffness.
        4,200원
        17.
        2014.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, shaking table test was carried out to evaluate the seismic behavior and performance of low-rise reinforced concrete (RC) piloti structures with and without retrofit. The specimens were designed considering the characteristics of existing building with pilotis such as natural period, distribution factor of strength and stiffness between columns and core wall on the first soft story. The test for the non-retrofit specimen showed that damage was concentrated on the stiffer member on the same floor as the core wall failed by shear fracture whereas columns experienced slight flexural cracks. Considering the failure mode of the non-retrofit specimen, the retrofit method using steel rod damper was presented for improving the seismic performance of piloti structures. The results of the test for retrofit specimen revealed that the retrofit method was effective for controlling the damage as the main RC structural members were not destroyed and most of input energy was dissipated by hysteretic behavior of the damper.
        4,200원
        18.
        2014.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In current seismic design code, steel moment frames are classified into ordinary, intermediate, and special moment frames. In the case of special moment frames which have large R-factor, economic design is possible by reducing the design lateral force. However, there is difficulty for practical application due to constraints such as strong column-weak beam requirement. This study evaluated if steel intermediate moment frame could maintain enough seismic capacity when the R-factor is increased from 4.5 to 6. As for the analytical models, steel moment frames of 3 and 5 stories were categorized into four performance groups according to seismic design category. Seismic performances of the frames were evaluated through the procedure based on FEMA P695. FEMA P695 utilizes nonlinear static analysis(pushover analysis) and nonlinear dynamic analysis(incremental dynamic analysis, IDA). In order to reflect the characteristics of Korean steel moment frames on the analytical model, the beam-column connection was modeled as weak panel zone where the collapse of panel zone was indirectly considered by checking its ultimate rotational angle after an analysis is done. The analysis result showed that the performance criteria required by FEMA P695 was satisfied when R-factor increased in all the soil conditions except SE.
        4,000원
        19.
        2013.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The construction costs for nonstructural systems such as mechanical/electrical equipment, ceiling system, and piping system occupy a significant proportion of the total cost. These nonstructural systems can also cause considerable economic losses and loss of life during and after an earthquake. Therefore, reduction of seismic risk of nonstructural components has been emerging as a key aspect of research in recent year. The primary objective of this study was to evaluate the seismic performance of a single-story and multi-story piping system installed in low-rise building and to identify the seismic vulnerability of the current piping systems. The seismic performance evaluation of the piping systems was conducted with 5 different earthquakes to account for the ground motion uncertainty and the preliminary results demonstrated that the maximum displacements of each floor in the multi-story piping system increased linearly with increasing floor level in the building system. This study revealed that the current design piping systems are significantly sensitive to the effect of floor height, which stress the necessity to improve the seismic performance of the current piping systems by, for example, strengthening with seismic sway bracing using transverse/longitudinal bracing cables or hangers.
        4,000원
        20.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the a static experiment of on two reinforced concrete (RC) frame sub‐assemblages was conducted to evaluate the seismic behaviors of existing RC frames that were not designed to support a seismic load. The specimens were a one span and actual‐sized. One of them had two columns with the same stiffness, but the other had two columns with different stiffness values. As Regarding the test results, lots of many cracks occurred on the surfaces of the columns and beam‐column joints for the two specimens, but the cover concrete splitting hardly occurred was minimal until the test ends. In the case of the specimen with the same stiffness offor the two columns, the flexural collapse of the left‐side column occurred. However, in the case of the specimen with different stiffness values for of the two columns, the beam‐column joint finally collapsed, even though the shear strength of the joint was designed to be strong enough to support the lateral collapse load. The nonlinear Nonlinear static analysis of the two specimens was also conducted using the uniaxial spring model, and the analytical results successfully simulated the nonlinear behaviour of the specimens in accordance with the test results.
        4,000원
        1 2 3